Speaker: Anna Suliga (Bohr Inst., UC, Berkeley, Wisconsin U., Madison, and DARK Cosmology Ctr.)
Towards Probing the Diffuse Supernova Neutrino Background in All Flavors
Fully understanding the average core-collapse supernova requires detecting the diffuse supernova neutrino background (DSNB) in all flavors. While the DSNB \bar{νe} flux is near detection, and the DSNB νe flux has a good upper limit and promising prospects for improved sensitivity, the DSNB νx (each of νμ, ντ, \bar{νμ}, \bar{ντ}) flux has a poor limit and heretofore had no clear path for improved sensitivity. We show that a succession of xenon-based dark matter detectors -- XENON1T (completed), XENONnT (under construction), and DARWIN (proposed) -- can dramatically improve sensitivity to DSNB νx the neutrino-nucleus coherent scattering channel. XENON1T could match the present sensitivity of ∼ 10^3 cm^(−2) s^(−1) per νx flavor, XENONnT would have linear improvement of sensitivity with exposure, and a long run of DARWIN could reach a flux sensitivity of ∼ 10 cm^(−2) s^(−1). Together, these would also contribute to greatly improve bounds on non-standard scenarios. Ultimately, to reach the standard flux range of ∼ 1 cm^(−2) s^(−1), even larger exposures will be needed, which we show may be possible with the series of proposed lead-based RES-NOVA detectors.