Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

Astro-Lunch: Andrea Caputo (Weizmann Institute of Science)

astrolunch
Fri, February 18, 2022
11:45 am - 12:45 pm
Zoom Virtual Seminar

Speaker: Andrea Caputo

Low-Energy Supernovae Severely Constrain Radiative Particle Decays

The hot and dense core formed in the collapse of a massive star is a powerful source of hypothetical feebly-interacting particles such as sterile neutrinos, dark photons, axion-like particles (ALPs), and others. Radiative decays such as a→2γ deposit this energy in the surrounding material if the mean free path is less than the radius of the progenitor star. For the first time, we use a supernova (SN) population with particularly low explosion energies as the most sensitive calorimeters to constrain this possibility. These SNe are observationally identified as low-luminosity events with low ejecta velocities and low masses of ejected 56Ni. Their low energies limit the energy deposition from particle decays to less than about 0.1 B, where 1 B (bethe)=1051 erg. For 1-500 MeV-mass ALPs, this generic argument excludes ALP-photon couplings Gaγγ in the 10−10-10−8 GeV−1 range. 

Filed in: