June 7, 2016
11:30AM
-
12:30PM
PRB 4138
Add to Calendar
2016-06-07 10:30:00
2016-06-07 11:30:00
Summer Seminar: "Results from the Completed SDSS-III BOSS" Ashley Ross (Physics)
I will talk about results from the completed SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), which mapped the structure of the Universe via spectroscopic redshift measurements of 1.2 million galaxies within a volume of 19 Gpc3. I will describe how BOSS data is used to measure distances via the localization of the baryon acoustic oscillation feature and the rate of structure growth via the modeling of redshift-space distortion effects. I will then describe how these measurements can be combined with those of cosmic microwave background experiments in order to test models of dark energy, measure the sum of the mass of neutrinos, and test general relativity.
PRB 4138
OSU ASC Drupal 8
ascwebservices@osu.edu
America/New_York
public
Date Range
2016-06-07 11:30:00
2016-06-07 12:30:00
Summer Seminar: "Results from the Completed SDSS-III BOSS" Ashley Ross (Physics)
I will talk about results from the completed SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), which mapped the structure of the Universe via spectroscopic redshift measurements of 1.2 million galaxies within a volume of 19 Gpc3. I will describe how BOSS data is used to measure distances via the localization of the baryon acoustic oscillation feature and the rate of structure growth via the modeling of redshift-space distortion effects. I will then describe how these measurements can be combined with those of cosmic microwave background experiments in order to test models of dark energy, measure the sum of the mass of neutrinos, and test general relativity.
PRB 4138
America/New_York
public
I will talk about results from the completed SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), which mapped the structure of the Universe via spectroscopic redshift measurements of 1.2 million galaxies within a volume of 19 Gpc3. I will describe how BOSS data is used to measure distances via the localization of the baryon acoustic oscillation feature and the rate of structure growth via the modeling of redshift-space distortion effects. I will then describe how these measurements can be combined with those of cosmic microwave background experiments in order to test models of dark energy, measure the sum of the mass of neutrinos, and test general relativity.