Probing primordial non-Gaussianity by reconstructing the initial conditions with machine learning

Xinyi Chen

CCAPP Symposium, 09/18/25

Planck, ACT, Simons Observatory,

. . .

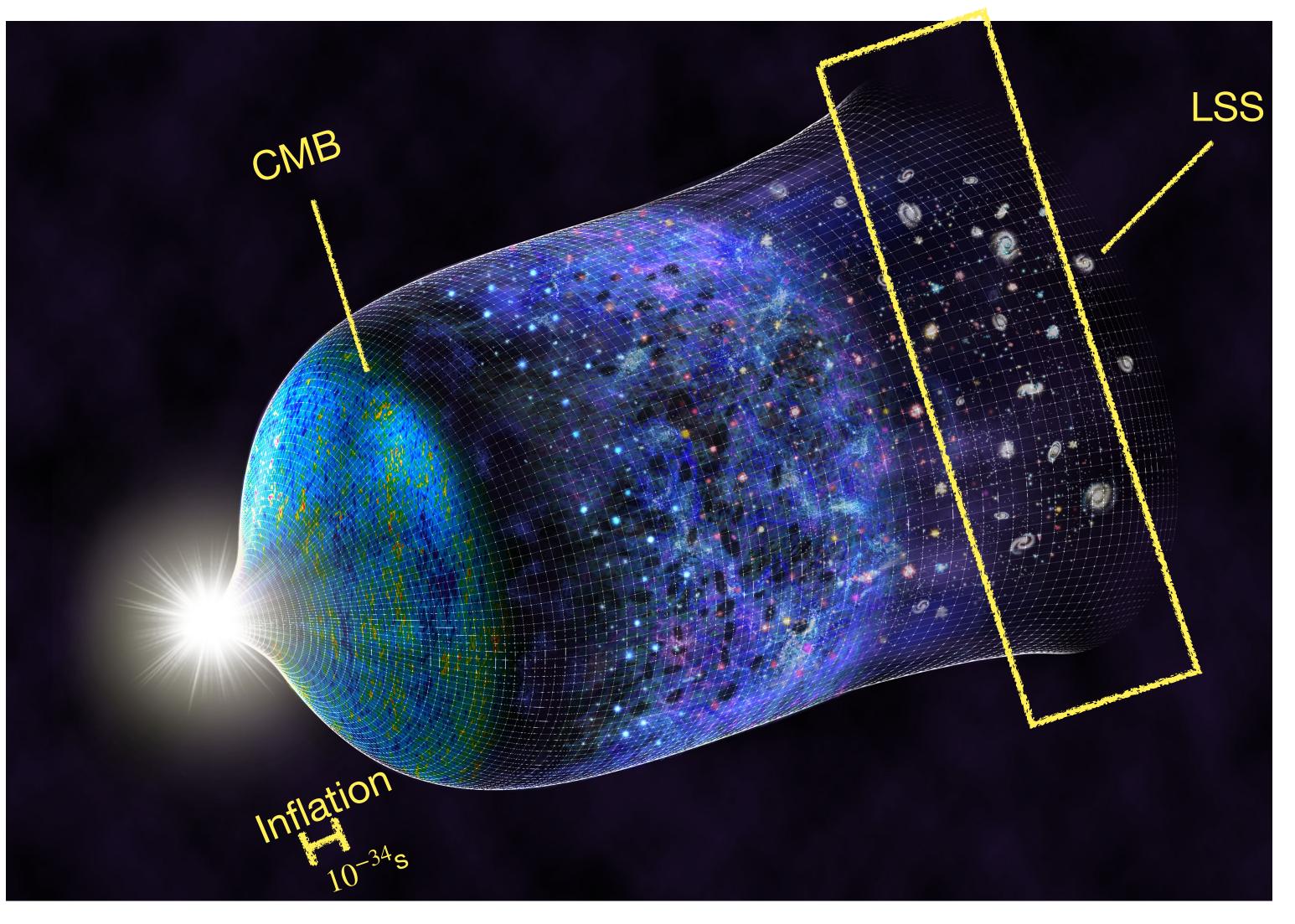
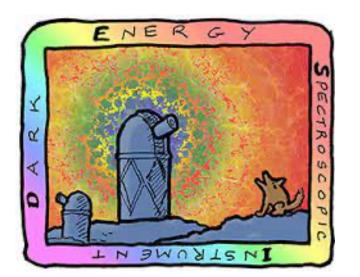


Image: Nicolle R. Fuller, National Science Foundation

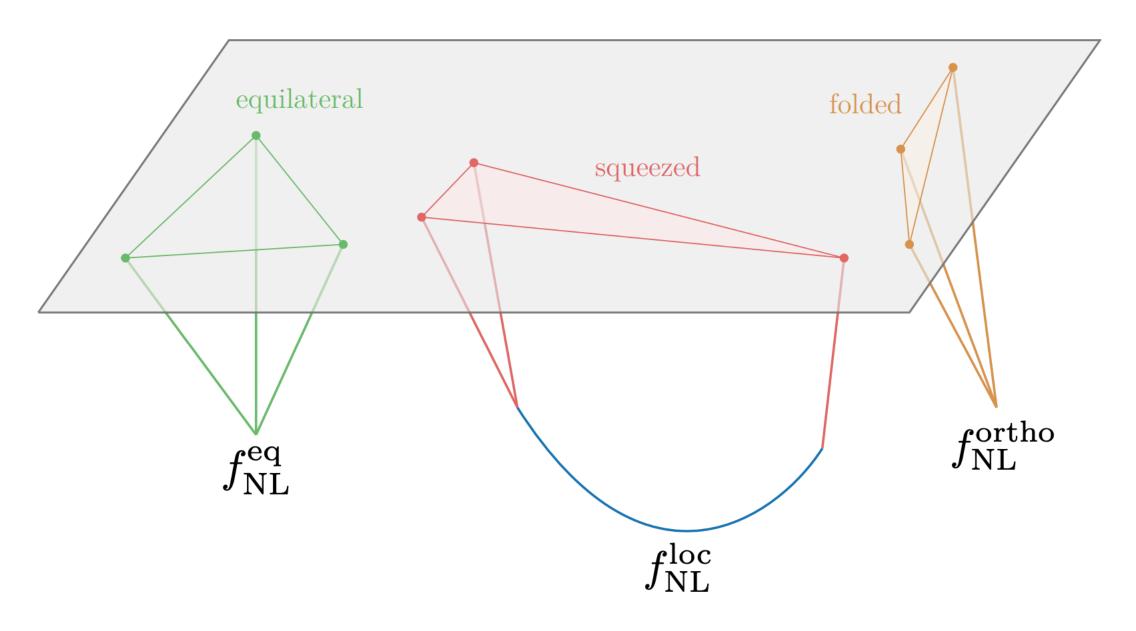
DESI, Euclid, Roman, ...



Understand the mechanism behind inflation

- Inflation seeded the density fluctuations that we can observe today
- Primordial non-Gaussianities (PNG):
 - Deviations from the initial Gaussian density fluctuations. Consequence of many inflation models
 - Robust probe of dynamics during inflation
- •Multiple types: different types of inflationary physics give rise to **higher-point** correlations peaked at different configurations —e.g. local, equilateral, orthogonal

•The size of PNG $-f_{\rm NL}$



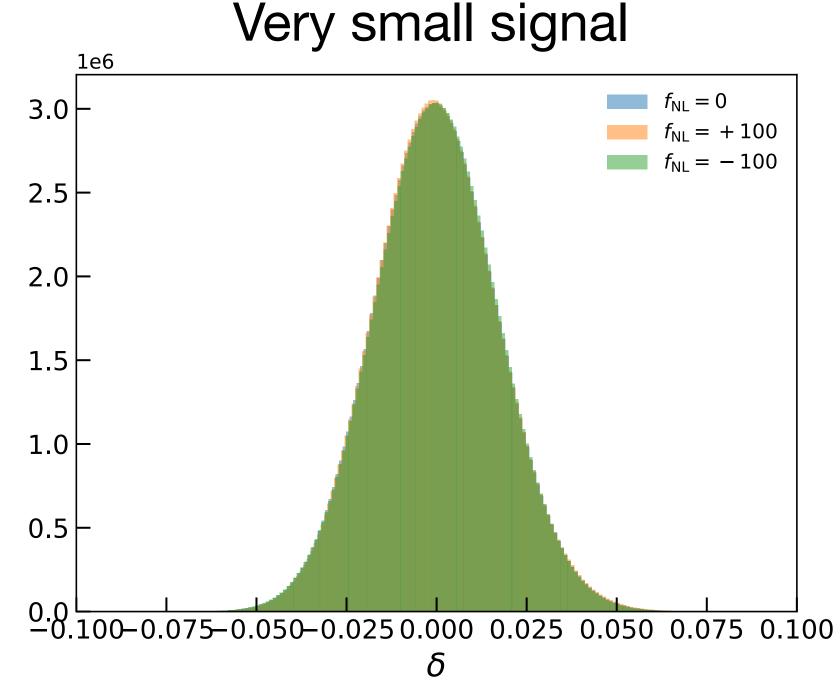
3 Image: A. Joyce

Local type f_{NL}^{loc}

$$\Phi(x) = \phi_G(x) + f_{\rm NL}^{\rm loc}\{\phi_G^2(x) - \langle \phi_G^2(x) \rangle\} + \dots$$
 Primordial potential Gaussian field

- Sensitive probe of multi-field models
- Multi-field: $|f_{\rm NL}^{\rm loc}| > 1$, single field $|f_{\rm NL}^{\rm loc}| < 0.01$

A sensitivity of $|f_{\rm NL}^{\rm loc}| < 1$: $\sigma(f_{\rm NL}^{\rm loc}) < 1$

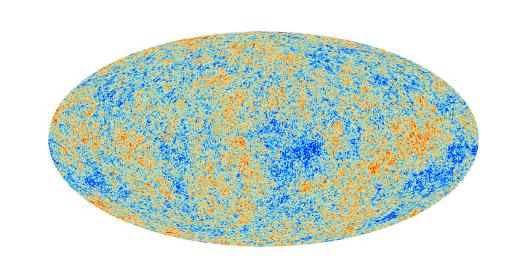


Matter density field at z=127 using Quijote simulations (Villaescusa-Navarro et al. 2020)

Equilateral type f_{NL}^{eq}

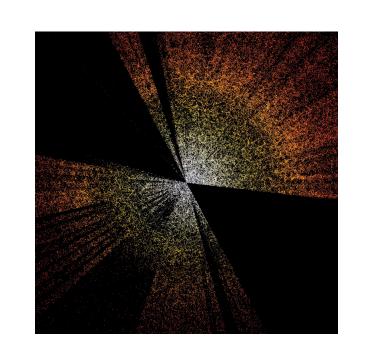
- •A probe of the self-coupling of the inflaton and its strong-coupling scale
- -Theoretical threshold: $f_{\rm NL}^{\rm eq} \sim 1$: $\sigma(f_{\rm NL}^{\rm eq}) < 1$
- ·Hard to measure: signal more contaminated by gravitational nonlinearity

Status of measurement with CMB

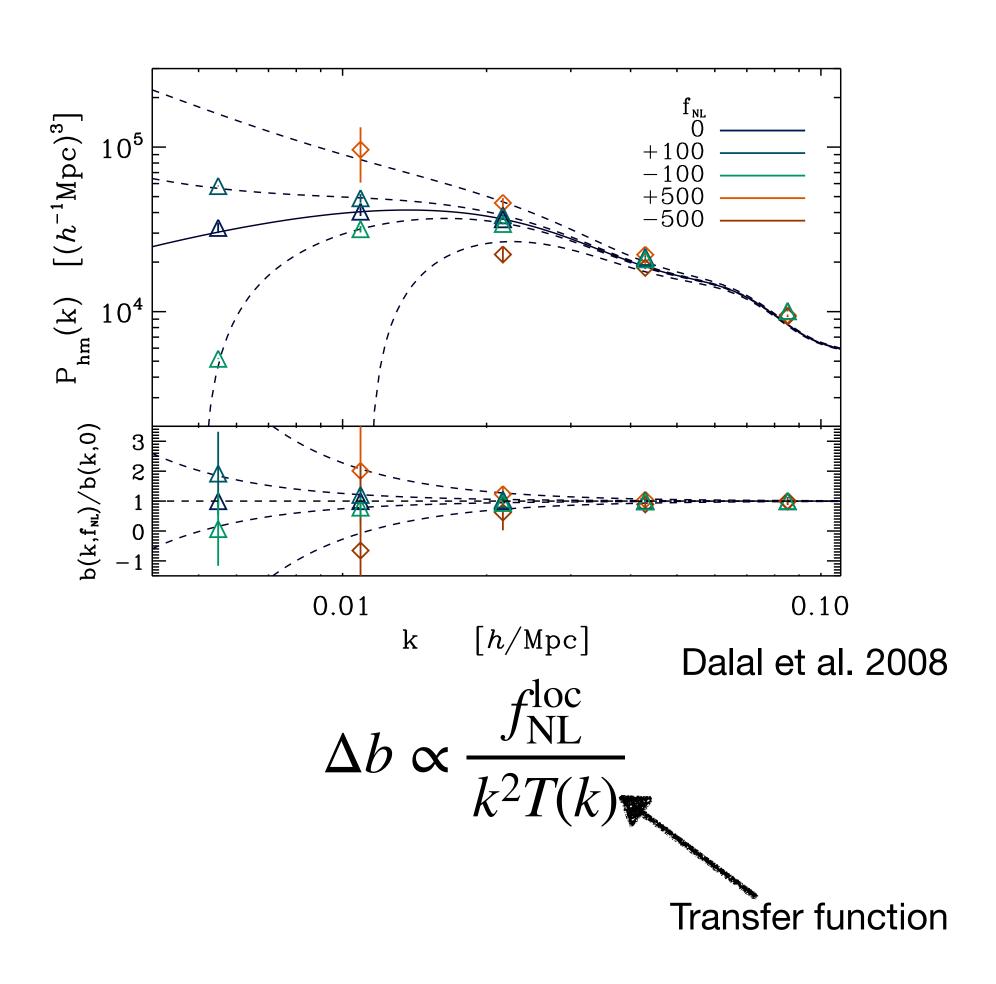


- Current best:
 - • $f_{\rm NL}^{\rm loc}$ = 0.9±5.1 (*Planck* Collaboration 2020)
 - • f_{NL}^{eq} = -26±47 (*Planck* Collaboration 2020)
- Limited by 2D nature
- Only a factor of 2 improvement in future

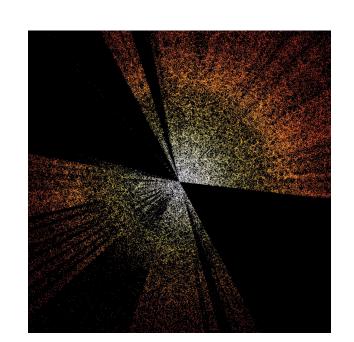
Status of measurement with LSS



- Current best:
 - • $f_{\rm NL}^{\rm loc}$ = -3.6±9.0 (DESI DR1 QSO+LRG P(k) only, Chaussidon et al. 2024)
 - • $f_{\rm NL}^{\rm eq}$ = 260±300 / 207±292 (BOSS, Cabass et al. 2022, D'Amico et al. 2022)
- Many more modes from 3D
- Local type measurable in two-point statistics: scale-dependent bias on galaxy power spectrum
 - Systematics
 - Cosmic variance on large scales



Status of measurement with LSS



Bispectrum comes to rescue

- Adding bispectrum for local -> tighter constraints
 - •e.g. a factor of ~3 Pk -> Bk, a factor of ~4 Pk -> Pk+Bk (SPHEREx, Dore et al. 2014)
- All other types need bispectrum
- Large bispectrum from gravity

Reconstruction

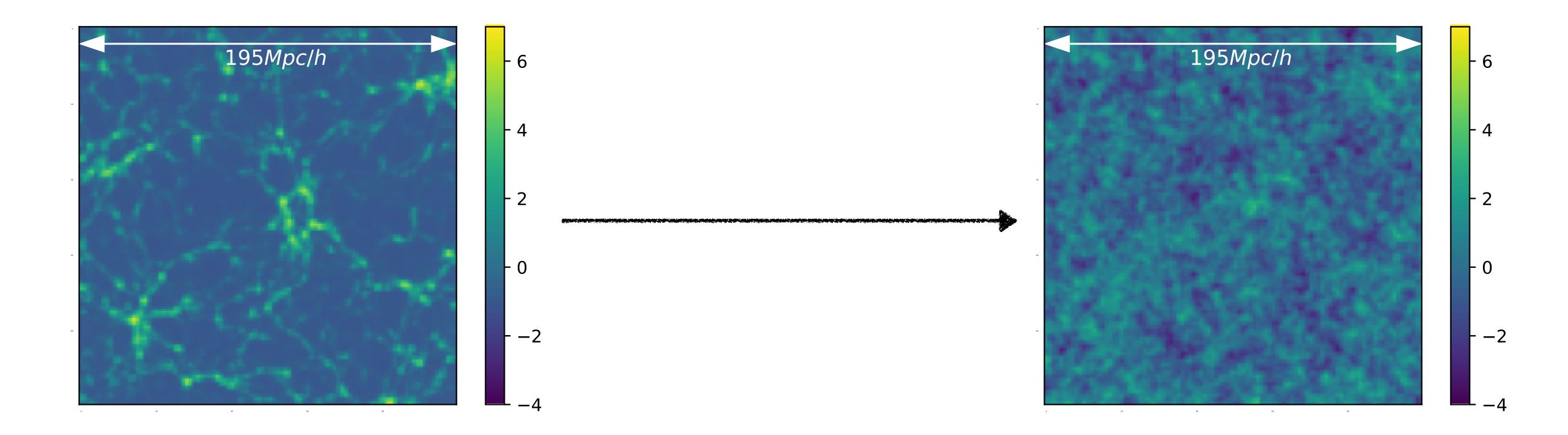
Large data vectors

Near-optimal 2-pt bispectrum estimator

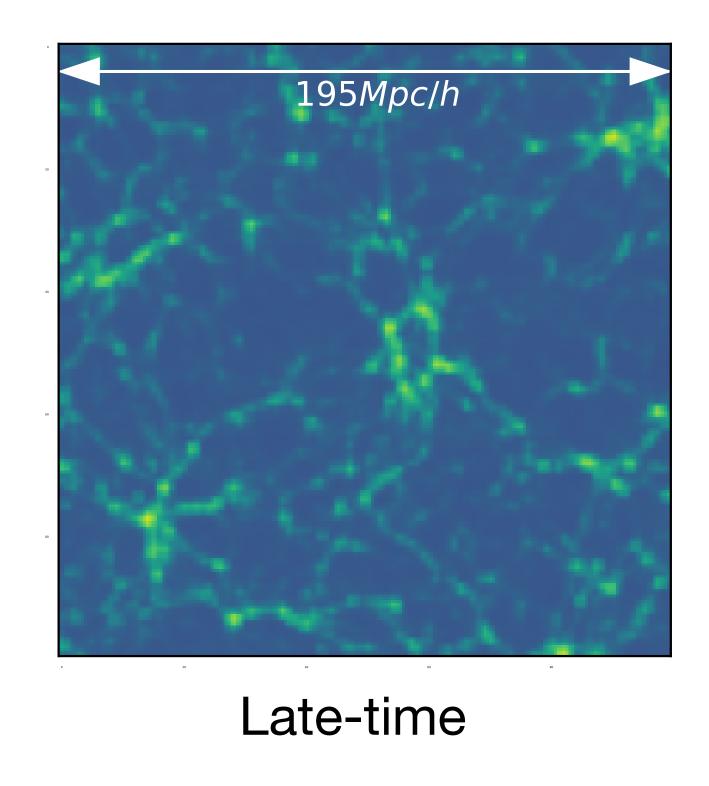
New approach to constraining PNG

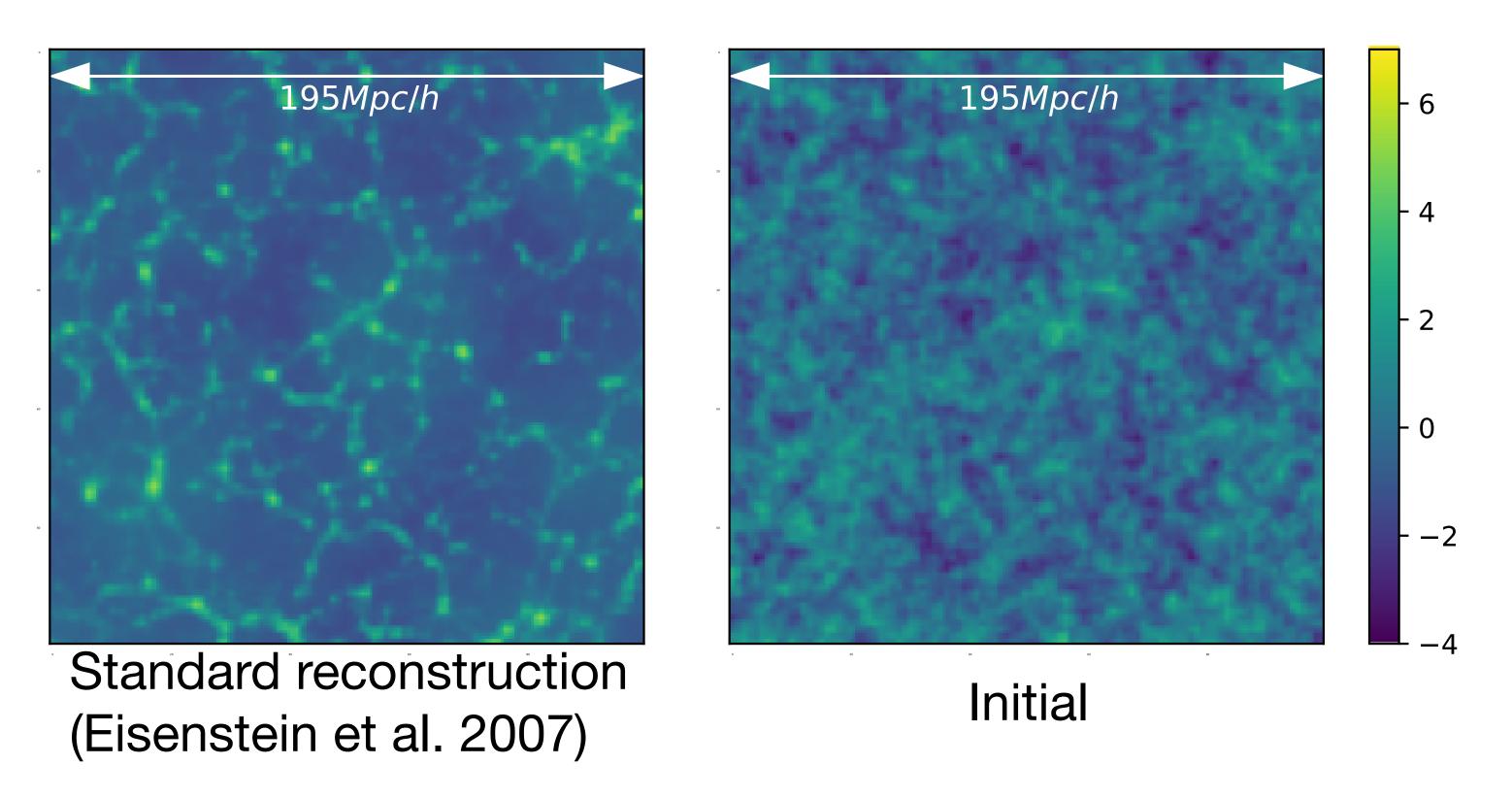
- Reconstructing the density field
- Computing and fitting a near-optimal 2-pt bispectrum estimator

Reconstruction of the initial conditions



Density field reconstructed by the standard reconstruction algorithm still nonlinear

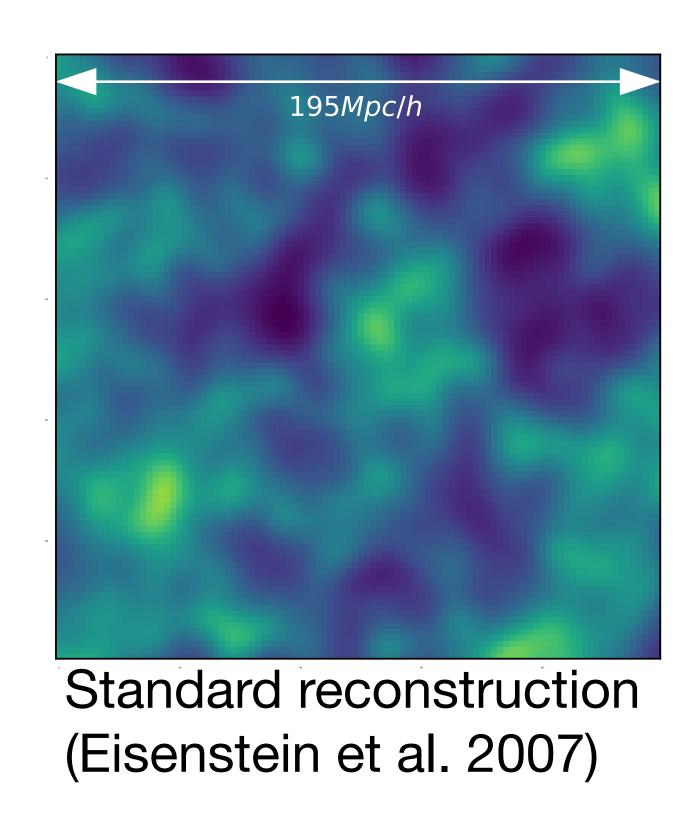


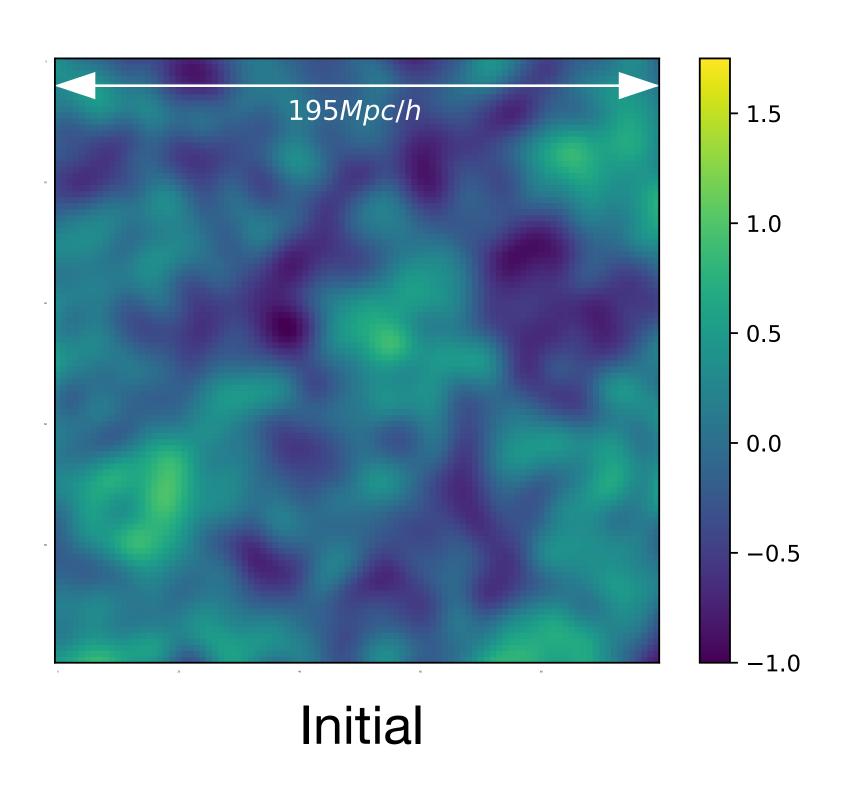


Normalized matter density fields at z=0, using Quijote simulations (Villaescusa-Navarro et al. 2020)

Density field reconstructed by the standard reconstruction algorithm still nonlinear

195Mpc/h Late-time

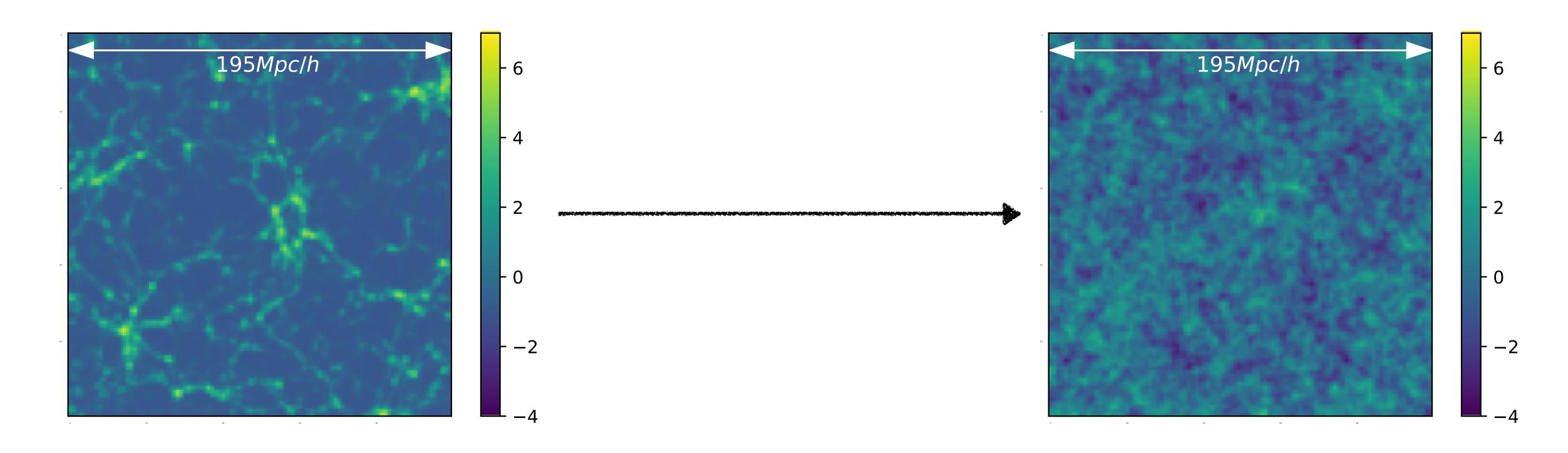




Normalized matter density fields at z=0, using Quijote simulations (Villaescusa-Navarro et al. 2020)

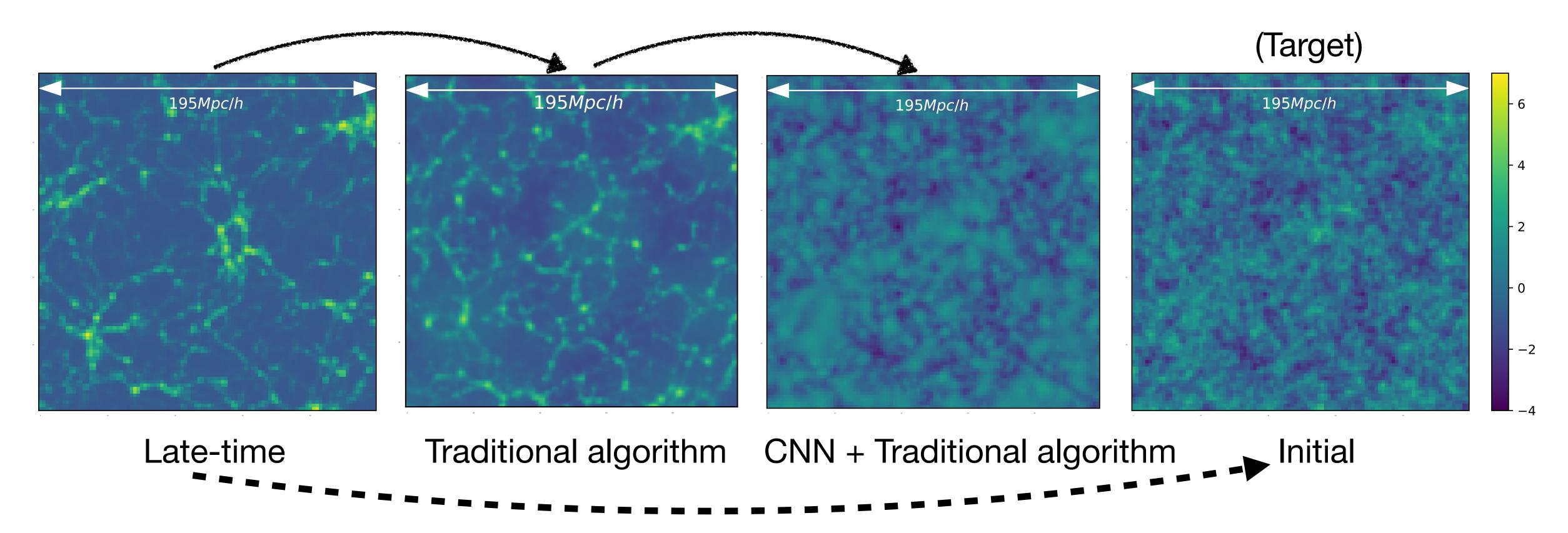
A new reconstruction method

A hybrid method that combines convolutional neural network (CNN) with traditional algorithm based on perturbation theory (**Chen** et al. 2023, Shallue & Eisenstein 2023)



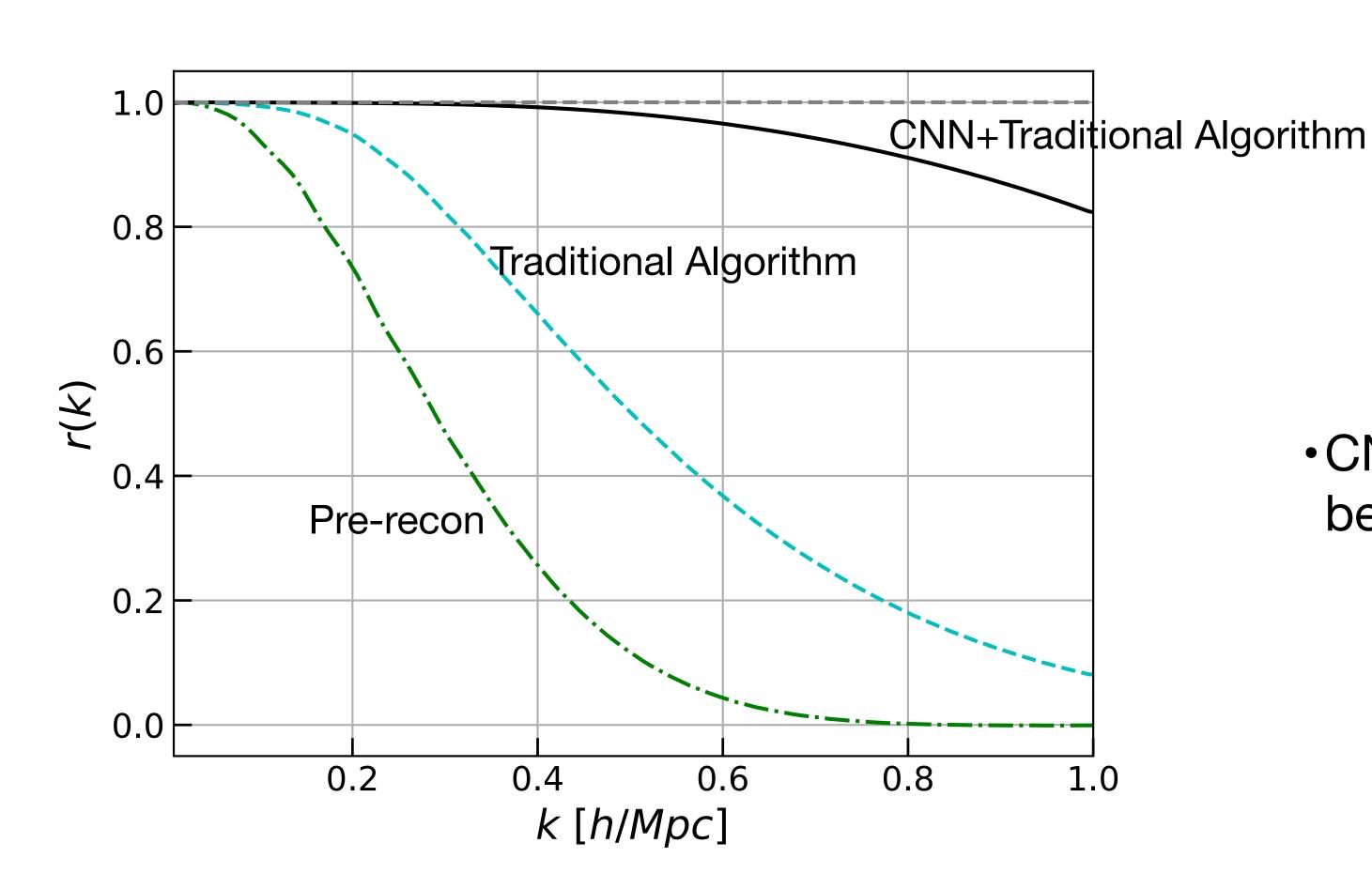
Large-scales use perturbation theory, small-scales use CNN

- First step: traditional algorithm
- Second step: train CNN with reconstructed density fields
- •CNN is relatively local, but perturbation theory provides good approximation on large scales. So traditional algorithm for large scales, CNN for smaller scales.



Normalized matter density fields at z=0, using Quijote simulations (Villaescusa-Navarro et al. 2020)

CNN improves cross-correlation in matter field

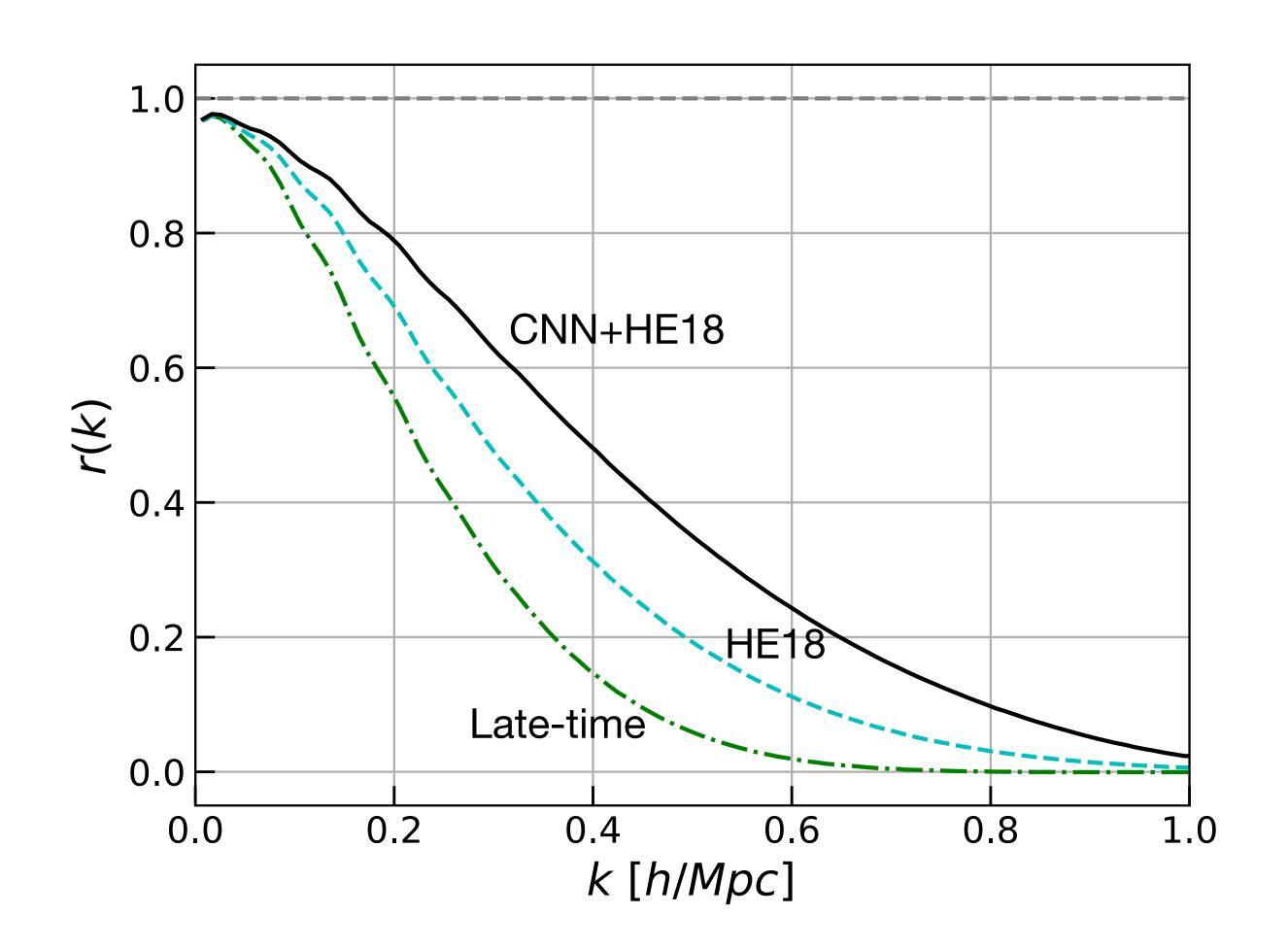


$$r(k) = \frac{\langle \delta^*(k) \delta_{\text{ini}}(k) \rangle}{\sqrt{\langle \delta^2(k) \rangle \langle \delta_{\text{ini}}^2(k) \rangle}}$$

 CNN+Algorithm performs significantly better

Real space matter field z=1, using Quijote simulations (Villaescusa-Navarro et al. 2020)

Hybrid recon boosts traditional algorithms in halo fields too



$$\bar{n} = 2.0 \times 10^{-4} h^3 \text{Mpc}^{-3}$$
 $b = 2.9$
 $b^2 \bar{n} = 1.7 \times 10^{-3} h^3 \text{Mpc}^{-3}$

z=1

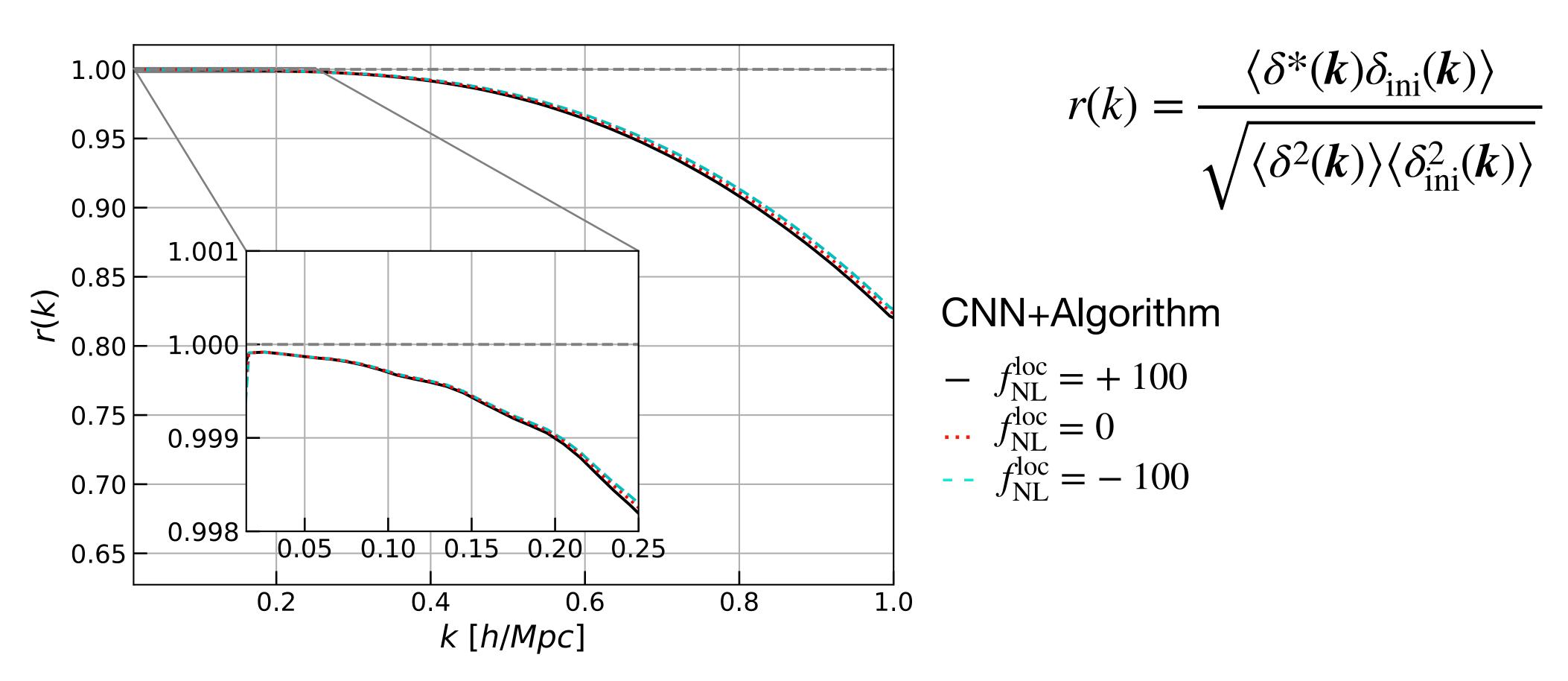
Similar to DESI Y1 LRG:

$$b^2 \bar{n} \sim 1.4 \times 10^{-3} h^3 \mathrm{Mpc}^{-3}$$

Now adding PNG...

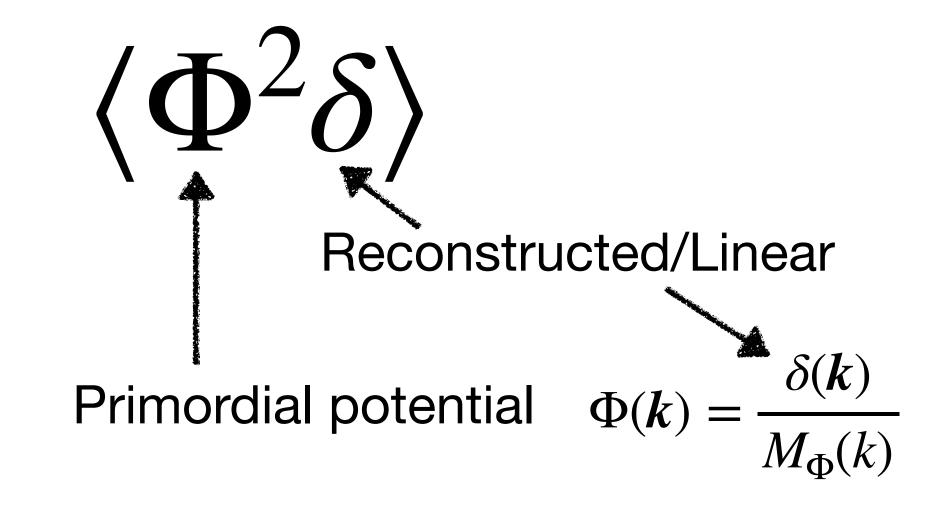
Three categories of sims: $f_{\rm NL}=0, f_{\rm NL}=+100, f_{\rm NL}=-100,$ matter density fields

Model trained with no PNG works for PNG



Real space matter field z=1, using Quijote-PNG simulations (Coulton et al. 2022)

Cross-power estimator for local type



$$\Phi^{2}(\mathbf{k}) = \int d\mathbf{x} e^{-i\mathbf{k}\cdot\mathbf{x}} \Phi^{2}(\mathbf{x}) = \frac{1}{(2\pi)^{3}} \int d\mathbf{k}_{1} \Phi(\mathbf{k}_{1}) \Phi(\mathbf{k} - \mathbf{k}_{1})$$

$$\langle \Phi^2(\mathbf{k}) \delta(-\mathbf{k}) \rangle = \frac{1}{(2\pi)^3} \int d\mathbf{k}_1 M_{\Phi}(\mathbf{k}) \langle \Phi(\mathbf{k}) \Phi(\mathbf{k} - \mathbf{k}_1) \Phi(-\mathbf{k}) \rangle$$

Primordial potential with local type f_{NL} : $\Phi(\mathbf{r}) = \phi_{\mathbf{r}}(\mathbf{r}) + f^{\text{loc}} \phi^2(\mathbf{r}) - (\phi^2(\mathbf{r}))$

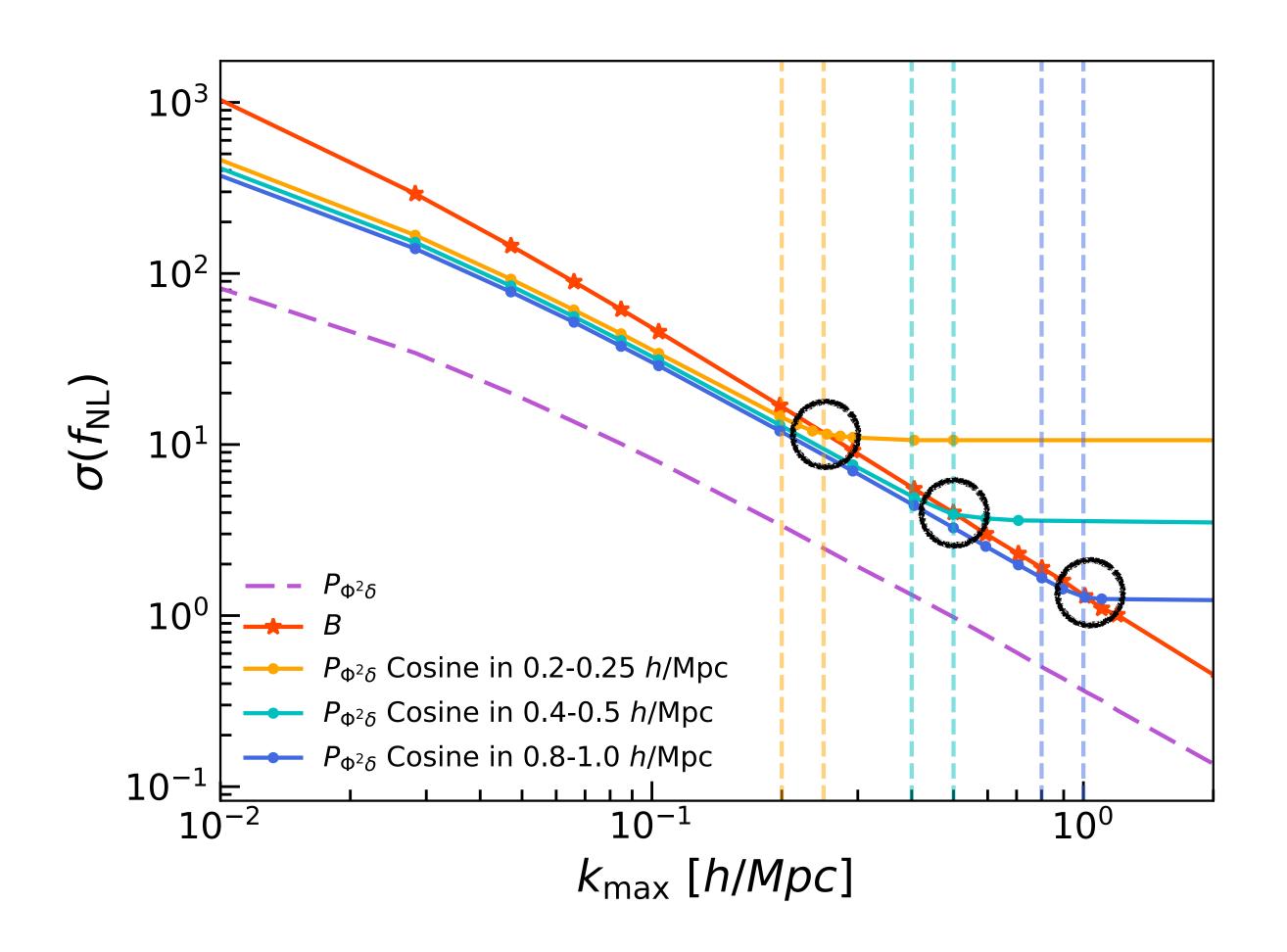
$$\Phi(x) = \phi_G(x) + f_{NL}^{loc} \{ \phi_G^2(x) - \langle \phi_G^2(x) \rangle \} + \dots$$

Gaussian potential

Transfer function
$$M_{\Phi}(k) = \frac{2}{3} \frac{k^2 T(k)}{\Omega_{\mathrm{m},0} H_0^2}$$

Primordial bispectrum

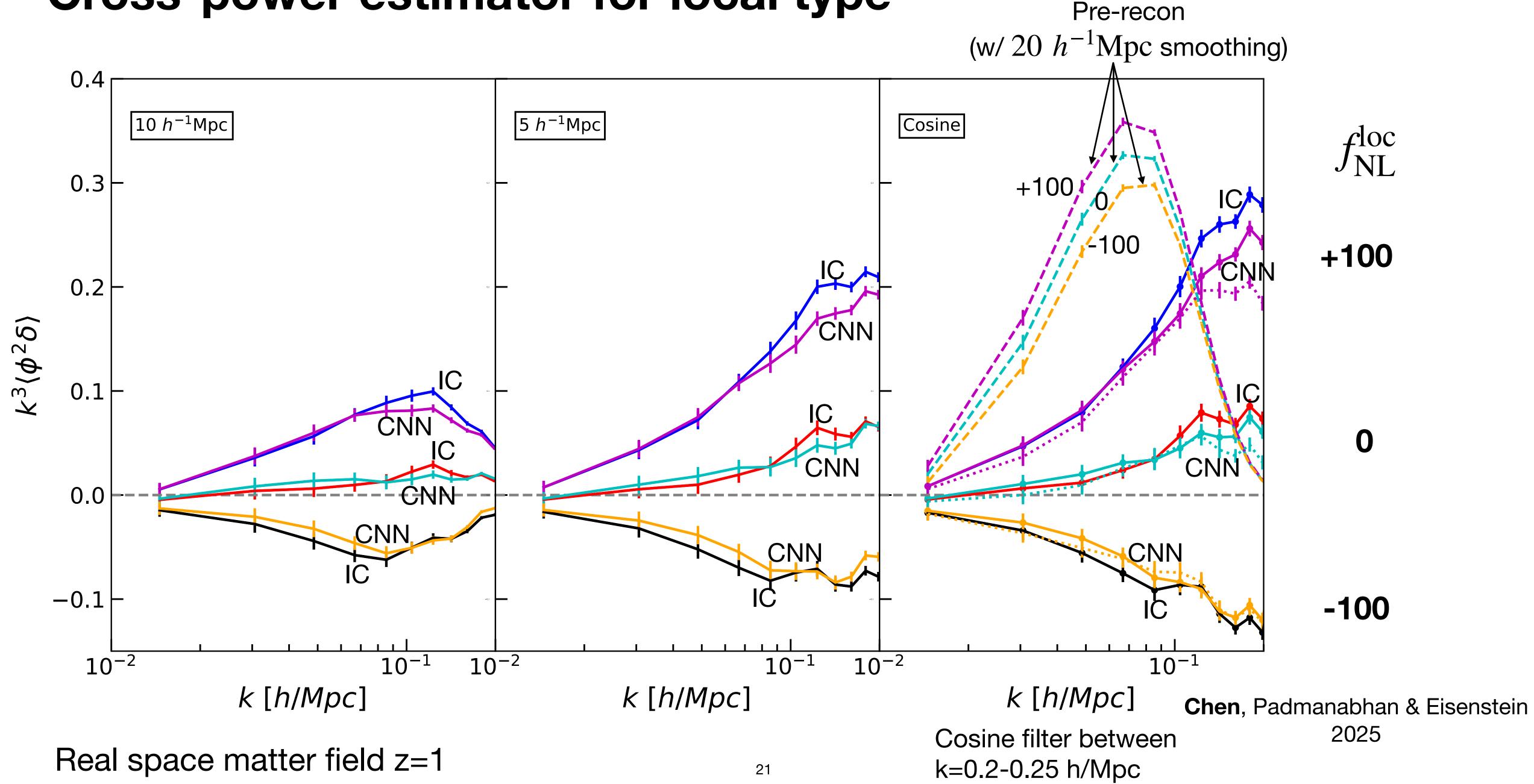
Optimality specifically for $\langle \Phi^2 \delta \rangle$



- Analytical calculation for a linear field
- •When setting the integration limit as well as evaluating at a k the same as the bispectrum $k_{\rm max}$, $\langle \Phi^2 \delta \rangle$ have same information as the bispectrum

Chen, Padmanabhan & Eisenstein 2025

Cross-power estimator for local type



Fisher error $\sigma(f_{\rm NL}^{\rm loc})$ for cross-power with matter density field of 1 Gpc/h volume

	$\overline{k_{ m max}}$	Smoothing	IC	CNN+HE18 z =	$1 NL \ z = 1$
		$10 \ h^{-1} \ { m Mpc}$	52.7	57.2	
	$0.1\;h/{ m Mpc}$	$5~h^{-1}~{ m Mpc}$	48.0	52.4	$.5x_{-}76.2$
		Cosine	46.4	50.7 $3x$	
	$\overline{0.2\;h/\mathrm{Mpc}}$	Cosine	15.8	17.4	54.5
Chen, Padmanabhan				(Smoothed at	
2025	a Liceriotenii				$20 h^{-1} \mathrm{Mpc})$
		F	For DESI QSO survey		
		V	olume (~2.9 Gpc	/h):	
			$\sigma(f_{\rm NL}^{\rm loc}) \sim 4$		

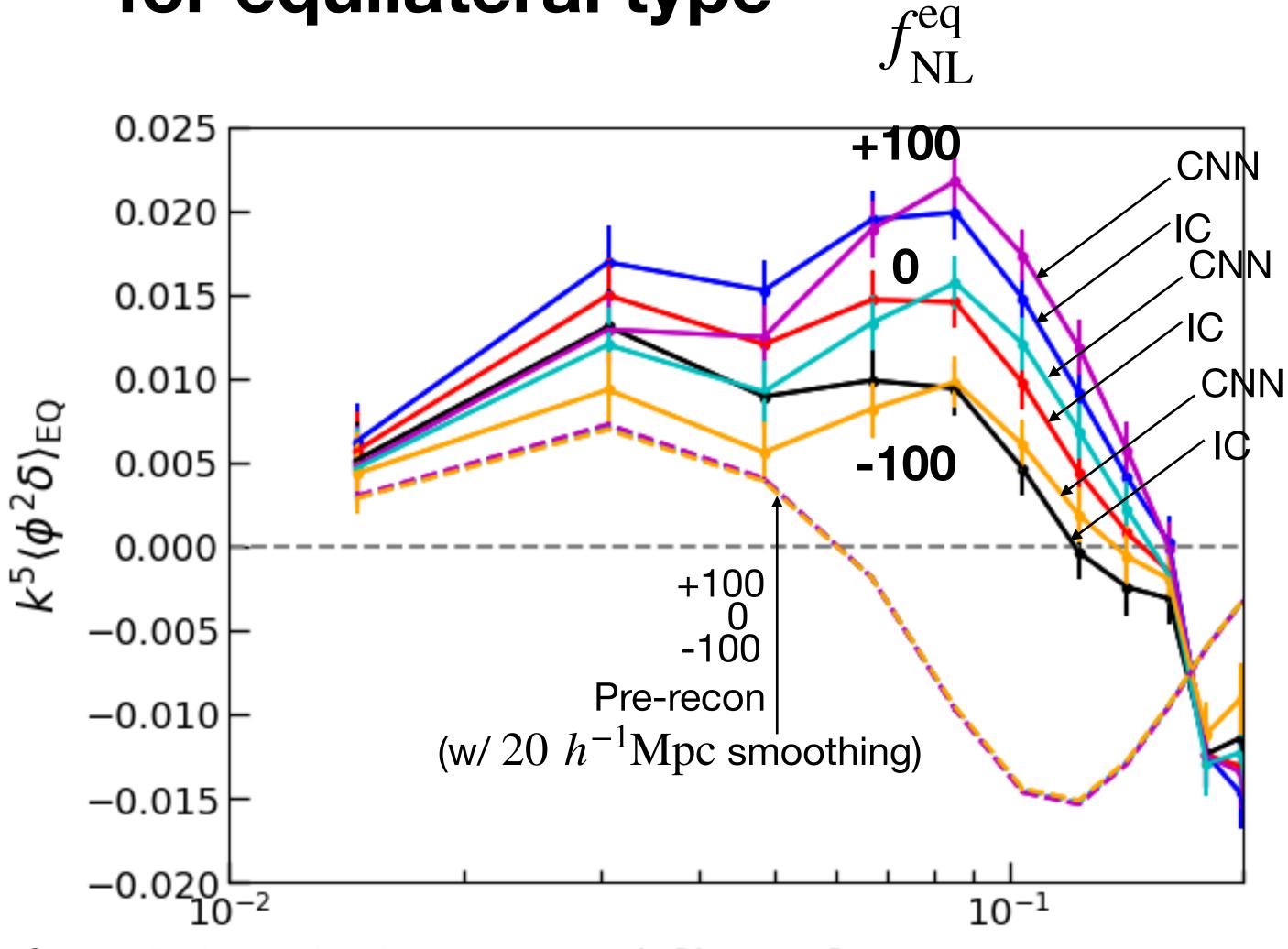
- •Single parameter forecast: CNN+HE18 $\sigma(f_{\rm NL}^{\rm loc})$ ~50, pre-recon $\sigma(f_{\rm NL}^{\rm loc})$ ~76 $(k_{\rm max}=0.1\ h/{\rm Mpc},$ z=1) ~1.5x improvement
- Hybrid reconstruction allows higher $k_{
 m max}$ -> getting larger volume is less necessary
- •Optimistic without including gravitational bias terms (squared, shift, tidal) -> can compute similar cross-power estimators

Cross-power estimator for equilateral type

 $\langle \Phi^2 \delta \rangle_{\rm EQ}$ = sum of a few terms which are powers of P_Φ weighted Φ , squared, cross-correlated with powers of P_Φ weighted δ

$$\langle \mathsf{FFT} \left(\mathsf{IFFT} \left[\frac{\tilde{\Phi}(k)}{P_{\Phi}^n} \right] \right)^2 \frac{\tilde{\delta}(k)}{P_{\Phi}^m} \rangle$$

Cross-power estimator for equilateral type



- •Smaller signal, large noise in equilateral type
- •Differences still more distinguishable after reconstruction
- Bias also exists, needs careful calibration

Chen & Padmanabhan in prep.

k [h/Mpc]

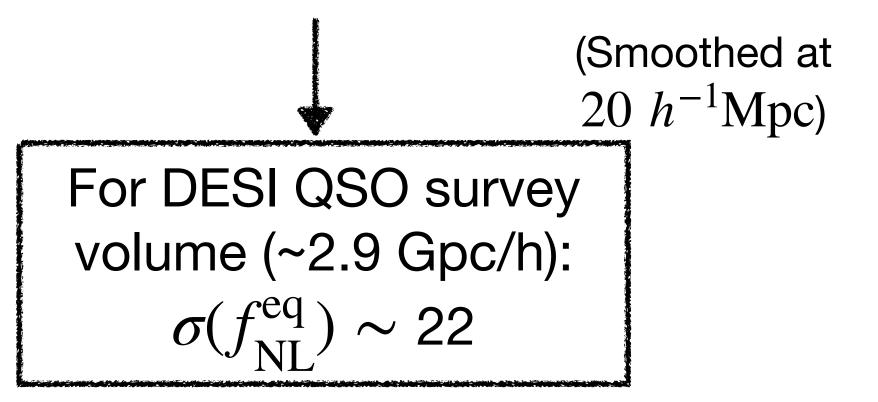
Cosine filter between k=0.2-0.25 h/Mpc

Real space matter field z=1

Fisher error $\sigma(f_{\rm NL}^{\rm eq})$ for cross-power with matter density field of 1 Gpc/h volume

$k_{\text{max}} h/\text{Mpc}$	Smoothing	IC	CNN+HE18	NL z=1
0.1	Cosine	151	134 1 2 v	
0.2	Cosine	118	108	279

Chen & Padmanabhan in prep.



- •Single parameter forecast: CNN+HE18 $\sigma(f_{\rm NL}^{\rm eq})$ ~698, pre-recon $\sigma(f_{\rm NL}^{\rm eq})$ ~134 ($k_{\rm max}=0.1~h/{\rm Mpc}$, z=1) ~5x improvement
- Optimistic without including gravitational bias terms

Summary

- Hybrid reconstruction removes most gravitational nonlinearity and strengthens the primordial signals
- Cross-power estimator is easy to compute and contains the same information of $f_{
 m NL}$ as the bispectrum
- Application of reconstruction on cross-power estimator gives lower $\sigma(f_{\rm NL})$ although slightly biased mean

Ongoing work and outlook

- Including quadratic gravitational bias terms in the model (estimate each bias term growth, shift, tidal with its own cross-power)
- Calibrating the bias in the measurement
- Applying to real data: high shot noise biased tracer

Thank you!