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What is Gaussian Process (GP) Regression
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N 1 —% N x> “normal” likelihood, often
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27T0'i2 objective function

assuming Gaussian-distributed noise and no time-dependent correlation.

) ] ) For (single source) microlensing lightcurves,
* F(t) — phySlCS(t) + GP(t) + white noise «——— physics(t) = F,A + Fg,where A is the magnification
model based on the arrangement of the lens

* The GP allows for time-dependent error correlation through use of a covariance
matrix (2):

Equivalent likelihood with
r’y—1p <« correlated errors;

InL = ——1In2m7 — IndetX — , reduces to the “normal” L

when X is diagonal.

where r is the residual vector, X,,,,, = 628, + k(t,,, t,;,), and k is the (physically motivated) GP
kernel(s) that correlates the errors in the time-domain (the off-axis terms in the covariance
matrix, X).



General Astrophysics Examples

* Gibson etal. (2012), Evans et al. (2015), Grunblatt et al. (2017)
transit timing analysis.

* Brewer & Stello (2009), Barclay et al. (2015), Grunblatt, Howard & L compute
Haywood (2016), Czekala et al. (2017) used with radial velocity time scales
measurements. [ with ¥ >

limit

* Used to model the background granulation noise in asteroseismic and Jgﬁfmess
helioseismic analyses (Harvey 1985; Huber at al. 2009; Michel et al. to small
2009; Kallinger et al. 2014; and others): data sets
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Foreman-Mackey et al. (2017) introduces celerite:
Computation time scales with N, exploiting kernels composed of complex
exponentials



Variability in the

source star (Li et al.

2019)

» Asteroseismology to
determine source size and
distance; which breaks the
distance-distance
degeneracy in the
microlensing model.

* GP models are consistent
with y* models to < 30.

* Quasi-periodic kernel
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Figure 1 from Liet al. (2019)



Black Holes

Events last multiple seasons

* Blend star arrangements change due kinematics

* Physical sources of systematics includes, stellar variability, weather, sky conditions,
etc.

* Golovich et al. (2022) used celerite for GP regression in the search for black holes in
OGLE-III and -1V survey data

* ZU = KSHO(ti'tj) + K@(ti,tj) + [KZO'ZCSU.]
2

* “IThey] find that modeling the variability in the baseline removes a source of
significant bias in individual events”
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Figure 8 and Figure 16 from Golovich et al. (2022)



Data Systematics (Spitzer events)

A few flux units, ~5 days

Seasonal rotation of the camera and
oorly defined neighboring star
ocations

Are the strange kinematics solutions
reall? £Chun et al. 2019, Shvartzvald
et al.

Are all the published mass and
distances skewed towards not
massive enough and too distant or
are the Galactic-models and their
inferences the problem?

019, 2017, Malpas et al. 2022).
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Physical Implications of using a GP with
Binary-Lens Spitzer Data

* The GP hyperparameters are not independent of the parallax
measurement.

* In general, inclusion of a GP does not change the parallax
measurement much, but it does widen the the posteriors on the
parallax parameters.

* Greater agreement between the physical determinations from
Spitzer parallax and the inferences from galactic models is
predominantly due to wider posterior posterior.

* Reestablished degenerate solutions that might otherwise have
been ruled out.
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GP weaknesses

* Kernel choice; it’'s complicated
* Fits take longer to run

* Start-up cost
* Potential for degeneracies with the physical model

* May not be supported by the data.

* Introduces complexities for the modeler when multiple data
sources are involved

e.g. Weakening of the baseline constraint between bands
imposed by the expected color from color-color relations; The
GP can “act” to undermine priors on the source color
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Roman Era Microlensing and GP Usage

* GP provides a means for marginalizing the affects of data
systematics; e.g. from variable blend stars, poorly estimated error
bars, and blend compositions changes due to kinematics.

* The Roman GBTDS will runs for 6 years and will have events
spanning observing seasons on a similar scale to those seen in the
Golovich et al. (2022) sample; use of GP may be computational
plausible with efficient likelihood computation.

* A potential tool for synergy between the fields of asteroseismology
and microlensing. GBTDS has an expected yield of ~10° detections
of oscillations in stars (Gould et al. 2015).
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