Local Primordial Non-Gaussianity from Large-Scale Galaxy Surveys

Charuhas Shiveshwarkar¹

September 25, 2024

 1 Work in collaboration with Marilena Loverde, Thejs Brinckmann, Drew Jamieson, and Matt McQuinn

- On the largest scales, the expanding universe is *spatially flat* as well as *homogeneous* and *isotropic* on the largest scales.
- Expansion driven primarily by Cosmological Constant (70%) and Cold Dark Matter (25%)

$$
\left(\frac{\dot{a}}{a}\right) \propto \left(\bar{\rho}_{\Lambda} + \bar{\rho}_{cdm} + \bar{\rho}_{b} + \bar{\rho}_{rad}\right) , \quad H = \left(\frac{\dot{a}}{a}\right) \approx 70 \text{ km/s/Mpc}
$$

How did departures from large-scale homogeneity (aka *structure*) come about ?? (Cosmic Inflation)

Cosmic Inflation

- Early phase of accelerated, near-exponential expansion $a(t) \sim e^{t}$ *Ht* – explains large-scale homogeneity
- \bullet Quantum fluctuations in inflationary era \rightarrow primordial density/curvature fluctuations $(\zeta) \rightarrow$ *structure* at late times.
- Nearly Gaussian, nearly scale-invariant fluctuations

$$
\langle |\zeta_k|^2 \rangle \propto \frac{1}{k^3} \left(\frac{k}{k_p}\right)^{n_s-1} \ ; \ n_s \sim 0.96 \ ; \ \frac{\langle \zeta^n \rangle}{\langle \zeta^2 \rangle^{n/2}} \ll 1 \ (n \geq 3)
$$

What do we know/don't know about the Inflationary Universe?

Current observations favour *single-field*, *slow-roll* picture :

Credit: arXiv:0907.5424

- No meaningful insight into any possible, additional contents of the universe or their interactions.
- Need *model-dependent* observables like Primordial Non-Gaussianity (PnG).

Primordial Non-Gaussianity (PnG)

- Higher-point correlation functions of ζ can probe the microphysics of inflation
- Bispectrum :

$$
\langle \zeta(\vec{k_1})\zeta(\vec{k_2})\zeta(\vec{k_3})\rangle' = B_{\zeta}(k_1,k_2,k_3) \equiv
$$

- **•** Trispectrum : $\langle \zeta(\vec{k_1})\zeta(\vec{k_2})\zeta(\vec{k_3})\zeta(\vec{k_4})\rangle' = \mathcal{T}_{\zeta}(\vec{k_1}, \vec{k_2}, \vec{k_3}, \vec{k_4}) \equiv \mathcal{R}_{4}$ *k1 k3* erophysics
 k_1
 k_2 *k2*
- Different shapes of B_{ζ} , T_{ζ} map on to different features of inflationary models and can be probes using cosmological surveys

Local Primordial Non-Gaussianity from Large-Scale Galaxy Surveys 5 / 17

Local Primordial Non-Gaussianity (LPnG)

Non-trivial soft limits of correlation functions parametrised by f_{NI} , g_{NI} , etc.

 $B_{\zeta}(q \to 0, k_1, k_2) \propto f_{NL}P_{\zeta}(k_1)P_{\zeta}(q)$

- Distinguishing feature of at least one additional light $(m \ll H)$ field during inflation. (Meerburg et al. 2019; Achúcarro et al. 2022)
- Boosted collapsed limit(s) :

Boosted collapsed limit(s):

\n
$$
\lim_{q \to 0} \frac{T_{\zeta}(\vec{k_1}, \vec{q} - \vec{k_1}, -\vec{q} + \vec{k_2}, -\vec{k_2})}{P_{\zeta}(q)} \propto \tau_{NL} P_{\zeta}(k_1) P_{\zeta}(k_2)
$$

• $f_{\text{NIL}} \sim 1$ is an important theoretical target for observations.

Local Primordial Non-Gaussianity from Large-Scale Galaxy Surveys 6 / 17

Measuring LPnG

CMB constraints from Planck (Aghanim et al. 2020)

 $f_{N1} = -0.9 \pm 5.1$; $g_{N1} = (-5.8 \pm 6.5) \times 10^4$; $\tau_{N1} < 2800$ (95%)

Not tight enough to constrain $f_{NI} \sim 1$; improvement limited by cosmic-variance.

Large Scale Structure (LSS) constraints are, as yet, systematics dominated.

BOSS (Cabass et al. 2022) \rightarrow $f_{\text{N1}} = -33 \pm 28$

Significantly higher potential for improvement – with improved systematic control in large-scale, high-redshift galaxy surveys.

Galaxy Surveys

Measure statistical properties of galaxy clustering

• Power Spectrum :

$$
\langle \delta_{g}(k_1) \delta_{g}(k_2) \rangle' = P_{g}(k_1)
$$

• Bispectrum :

$$
\langle \delta_g(k_1) \delta_g(k_2) \delta_g(k_3) \rangle' = B_g(k_1, k_2, k_3)
$$

Model observables using galaxy bias expansion :

$$
\delta_g(k,z)=b_g(k,z)\delta_m(k,z)+\dots
$$

LPnG and Scale dependent bias

• Signature of LPnG on galaxy bias (Dalal et al. 2008) :

> $\Delta b_{NG} \propto \beta_f \frac{f_{NL}}{k^2}$ *k*2

Can only have a primordial origin.

• Observable signal dominates at largest scales – more constraining than the

 $\frac{1}{2}$ Figure: Fractional change in the galaxy bispectrum power spectrum due to local $f_{NI} = 1$.

LPnG from Galaxy surveys

Credit: Doré et al. 2014 Figure: Effective volume probed by **SPHERE_x**

- Large-scale, high-redshift surveys with improved systematic control could detect $f_{NI} \sim 1$
- **Forecast constraints** : $\sigma(f_{NL}) \approx 0.9$ (PS), $\sigma(f_{NL}) \approx 0.5$ $(PS+BS)$
- $\bullet \sim 90\%$ constraining power from *linear* scales, i.e. $k \leq 0.02$ h/Mpc

Modelling Challenges/Theoretical Systematics

With improved control over observational systematics, LPnG constraints will be limited by modelling challenges and theoretical uncertainties :

- Post-inflationary, horizon-scale effects :
	- Effect of free-streaming light relics
	- Effect of ionising radiation fluctuations.
- **O** Degeneracy w.r.t. higher-order LPnG parameters (like g_{ML} , τ_{ML} , etc.)

Effect of free-streaming light relics

• Scale-dependent galaxy bias due to free-streaming light relics :

$$
\frac{b_{\rm g}(k)}{b_{\rm g}(k_{\rm max})} \rightarrow {\rm const.} < 1.;~k \rightarrow 0
$$

- Can *negatively* bias *fNL*
- For realistic neutrino masses, $|\Delta f_{NI}| \leq 0.2$

Figure: Fractional change in the galaxy power spectrum due to neutrino free-streaming. $M_{\nu} = 3 \times 0.02$ eV

Effect of Ionising Radiation Fluctuations

$$
\delta_{\rm g}=b_{\rm g}\delta_m-b_J\delta_J
$$

$$
P_g = P_{mm} \left(b_g - b_J \frac{P_{mJ}}{P_{mm}} \right)^2
$$

$$
+ b_J^2 P_{Jshot}
$$

- $b_j \leq 0.1$ and P_{Jshot} is negligible for reasonable quasar lifetimes. (Sanderbeck et al. 2019)
- More important at higher redshifts

Figure: Effect of $b_J = 0.05$ in comparison to the effect of $f_{NL} = 1$ at $z = 2$

Effect of ionising radiation fluctuations on f_{M} constraints

With appropriate priors,

$$
\Delta \sigma(f_{NL}) \approx 0
$$

 $\Delta f_{NI} \approx -0.8 \sigma$ for $b_I = 0.05$ and realistic quasar lifetime.

Larger effect for high-redshift surveys

Beyond f_{NL} : f_{NL} and g_{NL}

Scale-dependent bias is a combined measure of *fNL, gNL*, etc.

$$
\Delta b_{NG} \propto \frac{f_{NL}\beta_f+g_{NL}\beta_g+\dots}{k^2}
$$

Degraded constraint (SPHEREx forecast)

$$
\sigma(f_{NL}) \sim \sigma(10^{-4} g_{NL}) \sim 2.5
$$

 $Cov(f_{NI}, g_{NI}) \sim -0.9$.

Need to model $\beta_f(z)$ and $\beta_g(z)$!

Figure: Joint SPHEREx power spectrum forecasts for two modelling choices $p = 1$ and $p = 0.5$.

Local Primordial Non-Gaussianity from Large-Scale Galaxy Surveys 15 / 17

Beyond f_{NI} : f_{NI} and τ_{NI}

-

(a) Fiducial $f_{NL} = 1.0$ and fiducial (b) Fiducial $f_{NL} = 1.0$ and fiducial $\tau_{\text{NIL}} = 1.3 \times 10^2$ $\tau_{\text{N}} = 1.3 \times 10^3$

Table: Joint MCMC forecast for f_{NL} and τ_{NL} obtained from the SPHEREx multitracer likelihood. For each fiducial value of τ_{NL} , we consider two example values of $p = 1$ and $p = 0.5$

Covariance between f_{NI} and τ_{NI} remains ~ -0.6 : less degenerate than f_{NI} and g_{NI} .

Can potentially constrain τ_{N} tightly at the expense of f_{N} .