Local Primordial Non-Gaussianity from Large-Scale Galaxy Surveys

Charuhas Shiveshwarkar¹

September 25, 2024

¹Work in collaboration with Marilena Loverde, Thejs Brinckmann, Drew Jamieson, and Matt McQuinn

- On the largest scales, the expanding universe is *spatially flat* as well as *homogeneous* and *isotropic* on the largest scales.
- Expansion driven primarily by Cosmological Constant (70%) and Cold Dark Matter (25%)

$$\left(rac{\dot{a}}{a}
ight) \propto \left(ar{
ho}_{\Lambda} + ar{
ho}_{\it cdm} + ar{
ho}_{\it b} + ar{
ho}_{\it rad}
ight) \ , \ H = \left(rac{\dot{a}}{a}
ight) pprox 70 \ {
m km/s/Mpc}$$

• How did departures from large-scale homogeneity (aka *structure*) come about ?? (Cosmic Inflation)

Cosmic Inflation

- Early phase of accelerated, near-exponential expansion a(t) ~ exp Ht – explains large-scale homogeneity
- Quantum fluctuations in inflationary era → primordial density/curvature fluctuations (ζ) → structure at late times.
- Nearly Gaussian, nearly scale-invariant fluctuations

$$\langle |\zeta_k|^2
angle \propto rac{1}{k^3} \left(rac{k}{k_p}
ight)^{n_s-1}$$
 ; $n_s \sim 0.96$; $rac{\langle \zeta^n
angle}{\langle \zeta^2
angle^{n/2}} \ll 1 \ (n \geq 3)$

What do we know/don't know about the Inflationary Universe?

• Current observations favour *single-field*, *slow-roll* picture :

Credit: arXiv:0907.5424

- No meaningful insight into any possible, additional contents of the universe or their interactions.
- Need model-dependent observables like Primordial Non-Gaussianity (PnG).

Primordial Non-Gaussianity (PnG)

- Higher-point correlation functions of ζ can probe the microphysics of inflation
- Bispectrum :

$$\langle \zeta(\vec{k_1})\zeta(\vec{k_2})\zeta(\vec{k_3}) \rangle' = B_{\zeta}(k_1,k_2,k_3) \equiv$$

- Trispectrum : $\langle \zeta(\vec{k_1})\zeta(\vec{k_2})\zeta(\vec{k_3})\zeta(\vec{k_4}) \rangle' = T_{\zeta}(\vec{k_1}, \vec{k_2}, \vec{k_3}, \vec{k_4}) \equiv k_4$ k_4 k_3
- Different shapes of B_ζ, T_ζ map on to different features of inflationary models and can be probes using cosmological surveys

Local Primordial Non-Gaussianity (LPnG)

• Non-trivial soft limits of correlation functions parametrised by f_{NL} , g_{NL} , etc.

 $B_\zeta(q
ightarrow 0, k_1, k_2) \propto f_{NL} P_\zeta(k_1) P_\zeta(q)$

- Distinguishing feature of at least one additional light (m≪H) field during inflation. (Meerburg et al. 2019; Achúcarro et al. 2022)
- Boosted collapsed limit(s) :

$$\lim_{q \to 0} \frac{T_{\zeta}(\vec{k_1}, \vec{q} - \vec{k_1}, -\vec{q} + \vec{k_2}, -\vec{k_2})}{P_{\zeta}(q)} \propto \tau_{NL} P_{\zeta}(k_1) P_{\zeta}(k_2)$$

• $f_{NL} \sim 1$ is an important theoretical target for observations.

Local Primordial Non-Gaussianity from Large-Scale Galaxy Surveys

Measuring LPnG

• CMB constraints from Planck (Aghanim et al. 2020)

 $f_{NL} = -0.9 \pm 5.1$; $g_{NL} = (-5.8 \pm 6.5) imes 10^4$; $au_{NL} < 2800 \; (95\%)$

Not tight enough to constrain $f_{NL} \sim 1$; improvement limited by cosmic-variance.

• Large Scale Structure (LSS) constraints are, as yet, systematics dominated.

BOSS (Cabass et al. 2022) $\rightarrow f_{NL} = -33 \pm 28$

• Significantly higher potential for improvement – with improved systematic control in large-scale, high-redshift galaxy surveys.

Galaxy Surveys

- Measure statistical properties of galaxy clustering
- Power Spectrum :

$$\langle \delta_g(k_1) \delta_g(k_2) \rangle' = P_g(k_1)$$

• Bispectrum :

$$\langle \delta_g(k_1)\delta_g(k_2)\delta_g(k_3) \rangle' = B_g(k_1,k_2,k_3)$$

• Model observables using galaxy bias expansion :

$$\delta_g(k,z) = b_g(k,z)\delta_m(k,z) + \dots$$

LPnG and Scale dependent bias

• Signature of LPnG on galaxy bias (Dalal et al. 2008) :

 $\Delta b_{NG} \propto \beta_f rac{f_{NL}}{k^2}$

Can only have a primordial origin.

 Observable signal dominates at largest scales – more constraining than the bispectrum

Figure: Fractional change in the galaxy power spectrum due to local $f_{NL} = 1$.

LPnG from Galaxy surveys

Credit: Doré et al. 2014 Figure: Effective volume probed by SPHEREx

- Large-scale, high-redshift surveys with improved systematic control could detect $f_{NL} \sim 1$
- Forecast constraints : $\sigma(f_{NL}) \approx 0.9$ (PS), $\sigma(f_{NL}) \approx 0.5$ (PS+BS)
- ~ 90% constraining power from linear scales, i.e. $k \lesssim 0.02 \text{ h/Mpc}$

Modelling Challenges/Theoretical Systematics

With improved control over observational systematics, LPnG constraints will be limited by modelling challenges and theoretical uncertainties :

- Post-inflationary, horizon-scale effects :
 - Effect of free-streaming light relics
 - Effect of ionising radiation fluctuations.
- Degeneracy w.r.t. higher-order LPnG parameters (like g_{NL} , τ_{NL} , etc.)

Effect of free-streaming light relics

• Scale-dependent galaxy bias due to free-streaming light relics :

$$rac{b_g(k)}{b_g(k_{\sf max})}
ightarrow {
m const.} < 1.; \ k
ightarrow 0$$

- Can negatively bias f_{NL}
- For realistic neutrino masses, $|\Delta f_{NL}| \lesssim 0.2$

Figure: Fractional change in the galaxy power spectrum due to neutrino free-streaming. $M_{\nu} = 3 \times 0.02$ eV

Effect of Ionising Radiation Fluctuations

$$\delta_g = b_g \delta_m - b_J \delta_J$$

$$P_g = P_{mm} \left(b_g - b_J \frac{P_{mJ}}{P_{mm}} \right)^2 + b_J^2 P_{Jshot}$$

- b_J ≤ 0.1 and P_{Jshot} is negligible for reasonable quasar lifetimes. (Sanderbeck et al. 2019)
- More important at higher redshifts

Figure: Effect of $b_J = 0.05$ in comparison to the effect of $f_{NL} = 1$ at z = 2

Effect of ionising radiation fluctuations on f_{NL} constraints

With appropriate priors, $\Delta\sigma(f_{NL})pprox 0$

 $\Delta f_{NL} \approx -0.8\sigma$ for $b_J = 0.05$ and realistic quasar lifetime.

Larger effect for high-redshift surveys

Beyond f_{NL} : f_{NL} and g_{NL}

Scale-dependent bias is a combined measure of f_{NL} , g_{NL} , etc.

$$\Delta b_{NG} \propto rac{f_{NL}eta_f + g_{NL}eta_g + ..}{k^2}$$

Degraded constraint (SPHEREx forecast)

$$\sigma(f_{NL}) \sim \sigma(10^{-4}g_{NL}) \sim 2.5$$

 $\mathrm{Cov}(f_{NL}, g_{NL}) \sim -0.9.$

Figure: Joint SPHEREx power spectrum forecasts for two modelling choices p = 1 and p = 0.5.

Need to model $\beta_f(z)$ and $\beta_g(z)$!

Beyond f_{NL} : f_{NL} and τ_{NL}

р	$\sigma(f_{NL})$	$\sigma(au_{NL})$
1.0	1.79	$0.78 imes 10^2$
0.5	1.64	$0.67 imes 10^2$

p	$\sigma(f_{NL})$	$\sigma(au_{\sf NL})$
1.0	2.42	$0.24 imes 10^3$
0.5	2.22	$0.21 imes 10^3$

(a) Fiducial $f_{NL} = 1.0$ and fiducial (b) Fiducial $f_{NL} = 1.0$ and fiducial $\tau_{NL} = 1.3 \times 10^2$ $\tau_{NL} = 1.3 \times 10^3$

Table: Joint MCMC forecast for f_{NL} and τ_{NL} obtained from the SPHEREx multitracer likelihood. For each fiducial value of τ_{NL} , we consider two example values of p = 1 and p = 0.5

Covariance between f_{NL} and τ_{NL} remains ~ -0.6 : less degenerate than f_{NL} and g_{NL} .

Can potentially constrain τ_{NL} tightly at the expense of f_{NL} .