The Solar Gamma Rays as A New Probe of Solar Magnetism

Jung-Tsung Li

CCAPP Symposium September 26, 2024

Why are *continual* GeV-TeV gamma rays surprising? (Because the Sun itself doesn't emit continual GeV-TeV gamma rays)

- - Photosphere & chromosphere is 6,000-10,000 Kelvin, visible light (∼1 eV)
	- Corona is million Kelvin, EUV and X-ray ($\lesssim 1$ keV) Wave-driven turbulence and reconnection
	- Large solar flares produce nonthermal particles and gamma rays up to few GeV
		-

How does the Sun produce gamma rays? From galactic cosmic-ray (GCR) **bombardment**!

Inverse-Compton scattering in the solar halo

 $e^- + \gamma \to e^- + \gamma$

Galactic cosmic-ray electron Earth *e*− Gamma rays (Gev-Tel) Solar photons (eV)

Continual gamma rays from solar halo *(Not the focus of this talk)*

See Moskalenko, Porter & Diego 2006; Orlando & Strong 2007; Abdo et al 2011

> *Potentially a new way to probe electron cosmic ray transport in the inner heliosphere*

³ Linden, **JTL**, + (in preparation)

Continual gamma rays from solar disk Focus of this talk!

Hadronic scattering in the solar disk

 $p + p \to p + p + \pi^0$ $\pi^0 \rightarrow \gamma + \gamma$

°

°

(See Seckel, Stanev & Gaisser 1991)

4

What needs to be answered? (#1)

Credit: Cranmer et al. 2015

- **3**rsta.royalsocietypublishing.org Solar magnetic field is multi-scale, how do we think this problem? Today
- 2. Spectral shape:
	- Hard spectrum $\sim E_\gamma^{-2} \,$ below 200 GeV
	- Soft spectrum $\sim E_\gamma^{-3.6}~$ at ~ 1 TeV
- 3. Anti-correlation between gamma-ray flux and solar cycle
- 4. Anisotropic emission:
	- 1. Polar flux: relatively constant across solar cycle
	- 2. Equatorial flux: anti-correlate with solar cycle

 $dF_p/dE_p \propto E_p^{-2.7}$ *** Galactic cosmic-ray proton*

- 2. Spectral shape:
	- Hard spectrum $\sim E_\gamma^{-2}\,$ below 200 GeV **Today**

What needs to be answered? (#2)

1. Solar magnetic field is multi-scale, how do we think

this problem? Today

- 3. Anti-correlation between gamma-ray flux and solar cycle
- 4. Anisotropic emission:
	- Polar flux: relatively constant across solar cycle
	- 2. Equatorial flux: anti-correlate with solar cycle

$$
\circ \text{ Soft spectrum} \sim E_{\gamma}^{-3.6} \text{ at } \sim 1 \text{ TeV} \qquad \text{Today}
$$

What needs to be answered? (#3)

1. Solar magnetic field is multi-scale, how do we think

this problem? Today

- 2. Spectral shape:
	- Hard spectrum $\sim E_\gamma^{-2} \,$ below 200 GeV **Today**
	- Soft spectrum $\sim E_\gamma^{-3.6}~$ at ~ 1 TeV
	- 3. Anti-correlation between gamma-ray flux and solar cycle *Unknown*
	- 4. Anisotropic emission:
		- Polar flux: relatively constant across solar cycle
		- 2. Equatorial flux: anti-correlate with solar cycle

What needs to be answered? (#4)

1. Solar magnetic field is multi-scale, how do we think

this problem? Today

- 2. Spectral shape:
	- Hard spectrum $\sim E_\gamma^{-2} \,$ below 200 GeV **Today**
	- Soft spectrum $\sim E_\gamma^{-3.6}~$ at ~ 1 TeV Today $\sqrt{ }$
- 3. Anti-correlation between gamma-ray flux and solar cycle *Unknown*
- 4. Anisotropic emission: *Unknown*
	- Polar flux: relatively constant across solar cycle
	- 2. Equatorial flux: anti-correlate with solar cycle

Qualitative: At what depth is $p + p \rightarrow \pi^0 \rightarrow \gamma + \gamma$ produced?

• Absorption from proton-proton interaction $\int n_{\rm gas}(z) \sigma_{\rm pp} dz \sim 1$

Interacting at -1000 km to 1000 km

• Gamma rays from

Uppermost convection zone

Photosphere

Lower chromosphere

Coronal-hole Network Field & Open Field Lines

Redrawn illustration from Cranmer & van Ballegooijen 2005 and Wedemeyer-Bohm et al 2008

We consider proton cosmic rays following **open** magnetic fields, entering solar surface.

Thin Magnetic Sheets in the Intergranular Lanes

Intergranular lanes contain high intensity magnetic sheets due to flux expulsion (Weiss 1966, Volger et al. 2005)

Flux Expulsion

• Magnetic fields wound up due to eddy motion (Weiss 1966)

• For magnetic Reynolds number Rm \sim *vL/η* \gg 1, magnetic fields are "expelled" to boundary layer of eddy

- At surface of the Sun:
	- Granular cell at solar surface is eddy of size ~ 1000 km
	- kG magnetic fields formed at granular lane (e.g., Volger et al. 2005)

Credit: Galloway & Weiss 1981

 $Rm \sim vL/\eta \gg 1$

Main ideas of our model: flux tube + flux sheet

Network element (collection of flux tubes) lnternetwork region

(flux sheet)

• Step-1: Inject GCR protons at 10 Mm from surface

• Step-2:

Particles reaching the network element are injected into a flux tube

• Step-3:

Particles reaching the internetwork region are injected into a flux sheet

Two important ingredients:

- 1. Finite-sized flux geometry
- 2. Magnetic turbulence

Ingredient 1: Flux Geometry (Magneto-hydrostatic Equilibrium)

$$
\mathbf{B} \cdot [\nabla P - \rho \mathbf{g}] = 0
$$
 Hydro-equilibrium parallel to **B**

$$
\mathbf{J} = \frac{1}{B^2} \mathbf{B} \times [\nabla P - \rho \mathbf{g}]
$$
 Balancing net hydro-force perp. to **B**

$$
\nabla \times (\nabla \times \mathbf{A}) = 4\pi \mathbf{J}
$$
 Ampere's law

 $rac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r}$ ∂Ψ ∂*r* + $\partial^2\Psi$ ∂z^2 Tube: $\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = -4\pi rJ$ (Grad-Shafranov eqn) $B_r = -\frac{1}{r}$ *r* ∂Ψ ∂*z* $B_z =$ 1 *r* ∂Ψ ∂*r* $B_{\phi} = 0$

At z=0 km, $|B| \approx 1500$ G (Stenflo 1973)

JTL et al. 2024 (ApJ 961, 167)

Ingredient 2: Magnetic Turbulence

Magnetic bottle effect vs. Pitch-angle scattering

- Alfvenic fluctuations (Z[−]) from buffeting of granules
- Waves are partially reflected (\mathbb{Z}^+) due to density and field gradients
- Counter-propagating waves trigger turbulent cascade, creating smaller scales
- Magnetic energy dissipates to kinetic energy causing the coronal heating

Our Result #1: Fraction of GCR Penetrating Network Field

JTL et al. 2024b, in preparation **JTL** et al. 2024a (ApJ 961, 167)

17

Our Result #3: Average Emission Height

- Emission mainly happens in height *z* = − 100 km to $400\ \mathrm{km}$, corresponding to **photosphere & uppermost convection zone**
- A new tool to probe photospheric magnetism

JTL et al. 2024b, in preparation **JTL** et al. 2024a (ApJ 961, 167)

Conclusions and Outlook

- A simple model consisting of network element and intergranular sheet:
	- Lower-energy $γ$ from network elecment, higher-energy $γ$ from intergranular sheet \overline{O}
	- Finite-sized flux sheet results in ineffectiveness of capturing higher-energy GCRs
		- steep γ spectrum at $\sim \text{TeV}$ seen by HAWC.
- What causes the anti-correlation between $γ$ flux and solar cycle? Quiet vs. active regions? Magneto-convection? GCR transport?
- Exciting opportunities ahead!

— Small-scale dynamo vs. magneto-convection

Solar-disk probe of γ to reveal small-scale magnetic fields at photospheric surface:

Backup slides

Finite-Sized Emission Cone (*for each pp interaction*)

$$
S_p = \int_0^{\overline{\chi}_p} \frac{dP_{\text{abs}}(\chi_p, E_p)}{d\chi_p} \zeta(\mathbf{r}) d\chi_p
$$

= proton GCR absorption probability × gamma transmission probability

JTL et al. 2024 (ApJ 961, 167) ²¹

Results: Optimal Injection Angle

** Polar angle θ_0 is angle relative to \hat{z} -axis ̂

JTL et al. 2024 (ApJ 961, 167)

Our Result: Average Emission Angle

- Our result:
- Locally, emission angle is 50° $\lesssim \theta_p \lesssim 80$ ° due to highest gas density at reflection point where pitch angle is 90°

• Emission can happen at center of disk ($\theta_p \sim 0$ °), which cannot be explained by our model

Fermi-LAT observation:

JTL et al. 2024 (ApJ 961, 167)