New Constraints on the Giant Planet Occurrence Rate in 47 Tuc

Alison L. Crisp

CCAPP Symposium | Sept. 25, 2024

Image Credit: NASA/Hubble

5,759 Exoplanets

3,321 *Kepler* + *K*2

557 *TESS*

(NASA Exoplanet Archive 09/24/2024)

crisp.92@osu.edu

Image Credit: ESA/Gaia/DPAC

Halo – low [Fe/H], high $[\alpha/Fe]$

Thick Disk – low [Fe/H], high [α /Fe]

Thin Disk - high [Fe/H], low (a/Fe)

Bulge – high [Fe/H], high [α/Fe]

Why disentangle abundances?

- Giant planet formation strongly correlated with metallicity.
 - *f_{GP}* ∝ 10^{2.0 [Fe/H]} (Fischer & Valenti, 2005)
 - *f_{GP}* ∝ 10^{1.2 [Fe/H]} (Johnson et al., 2010)
- Is [α/H]=[α/Fe]+[Fe/H] more important than [Fe/H] alone?
- [Fe/H] and [α/Fe] are strongly correlated in disk stars, so multiple populations need to be surveyed.

Fischer & Valenti, 2005

Why globular clusters?

- Well-known characteristics.
- Generally consistent populations.
- Accessible low-[Fe/H], high-[α/Fe].
- Place important constraints either way.

Values from Forbes 2010, Cordero 2014, & Pilachowski 2010

Why globular clusters?

APOGEE abundance data from Left: Weinberg et al., 2019; Right: Griffith et al., 2021

A. Crisp

A. Crisp

But what if clusters match Kepler instead?

- Masuda & Winn (2017).
- Draws 34,091 stars matching G00's parameters from *Kepler sample*.
- Assumes two occurrence rates:
 - 0.43% (full sample).
 - 0.24% (low mass Kepler, 0.568– 0.876 M_{\odot}).
- \Rightarrow Expect 4 planets for full, 2.2 planets for low mass.

MISHAPS: The Multiband Image Survey for High-Alpha PlanetS

- Performed with the Dark Energy Camera (DECam) at CTIO.
- Goal of measuring occurrence rates in different [α/Fe] population.
- Multiple filters used for false positive rejection.

MISHAPS: The Multiband Image Survey for High-Alpha Planets

- Performed with the Dark Camera (DECam) at CTI
- Goal of measuring occurrates in different [α/Fe] population.
- Multiple filters used for f positive rejection.

47 Tuc Observations

	47 Tuc
[Fe/H]*	-0.78
[a/Fe]*	0.3
Hours Observed	126

*Values from Forbes 2010, Cordero 2014, & Pilachowski 2010

The MISHAPS Pipeline

Occurrence Rate and Limits

95% confidence \Rightarrow up to 3 planets could be present while we still observe none.

Occurrence Rate Limit

	2.00-									-0.35	
	1.75- 1.50- 1.25- 1.00-	$0.077\substack{+0.0\\-0.0}$	$0.16\substack{+0.0 \\ -0.0}$	$0.28\substack{+0.0 \\ -0.0}$	$0.41^{+0.0}_{-0.0}$	$0.52\substack{+0.0 \\ -0.0}$	$0.72\substack{+0.0\\-0.0}$	$0.96\substack{+0.1 \\ -0.1}$	$1.1^{+0.1}_{-0.1}$	-0.30	
$R_{p}[R_{J}]$		$0.082\substack{+0.0\\-0.0}$	$0.18\substack{+0.0\\-0.0}$	$0.32^{+0.0}_{-0.0}$	$0.44^{+0.0}_{-0.0}$	$0.57^{+0.0}_{-0.0}$	$0.84^{+0.1}_{-0.1}$	$1^{+0.1}_{-0.1}$	$1.4^{+0.1}_{-0.1}$	-0.25 +	ate [🛛
		$0.089\substack{+0.0\\-0.0}$	$0.2^{+0.0}_{-0.0}$	$0.33^{+0.0}_{-0.0}$	$0.48\substack{+0.0\\-0.0}$	$0.68\substack{+0.0\\-0.0}$	$0.94\substack{+0.1\-0.1}$	$1.3^{+0.1}_{-0.1}$	$1.5^{+0.1}_{-0.1}$	-0.20	SUCe R
		$0.11\substack{+0.0\\-0.0}$	$0.24^{+0.0}_{-0.0}$	$0.41^{+0.0}_{-0.0}$	$0.61\substack{+0.0\\-0.0}$	$0.91\substack{+0.1 \\ -0.1}$	$1.2^{+0.1}_{-0.1}$	$1.5^{+0.1}_{-0.1}$	$1.8^{+0.2}_{-0.2}$	-0.15	CCULTE
		$0.16\substack{+0.0\\-0.0}$	$0.4^{+0.0}_{-0.0}$	$0.64^{+0.0}_{-0.0}$	$1.1^{+0.1}_{-0.1}$	$1.3^{+0.1}_{-0.1}$	$2.1^{+0.2}_{-0.2}$	$2.1^{+0.2}_{-0.2}$	$4.1^{+0.5}_{-0.5}$	-0.10	Jax. C
	0.75	$0.56\substack{+0.1\\-0.1}$	$2.3^{+0.4}_{-0.3}$	$4.5^{+0.9}_{-0.8}$	$6.2^{+1.2}_{-1.1}$	$7.6^{+1.5}_{-1.4}$		22 ^{+6.4} -5.5	$35^{+11.3}_{-9.6}$	-0.052	2
0.50 0.500 1.688 2.875 4.062 5.250 6.438 7.625 8.812 10.000 Orbital Period [days]									000		

Occurrence Rate Limit

2.0	0 -								-0.35
1 7	0.077 ^{+0.0} _{-0.0}	$0.16\substack{+0.0\\-0.0}$	$0.28^{+0.0}_{-0.0}$	$0.41^{+0.0}_{-0.0}$	$0.52^{+0.0}_{-0.0}$	$0.72^{+0.0}_{-0.0}$	$0.96\substack{+0.1\\-0.1}$	$1.1^{+0.1}_{-0.1}$	-0.30
1.7	$0.082^{+0.0}_{-0.0}$	$0.18\substack{+0.0\\-0.0}$	$0.32^{+0.0}_{-0.0}$	$0.44^{+0.0}_{-0.0}$	$0.57^{+0.0}_{-0.0}$	$0.84^{+0.1}_{-0.1}$	$1^{+0.1}_{-0.1}$	$1.4^{+0.1}_{-0.1}$	-0.25 e
R 1	$0.089^{+0.0}_{-0.0}$	$0.2^{+0.0}_{-0.0}$	$0.33^{+0.0}_{-0.0}$	$0.48\substack{+0.0\\-0.0}$	$0.68\substack{+0.0\\-0.0}$	$0.94\substack{+0.1\\-0.1}$	$1.3^{+0.1}_{-0.1}$	$1.5^{+0.1}_{-0.1}$	-0.20 C
۲.2: ۲ ۵ ۱ ۵	$0.11^{+0.0}_{-0.0}$	$0.24^{+0.0}_{-0.0}$	$0.41^{+0.0}_{-0.0}$	$0.61^{+0.0}_{-0.0}$	$0.91^{+0.1}_{-0.1}$	$1.2^{+0.1}_{-0.1}$	$1.5^{+0.1}_{-0.1}$	$1.8^{+0.2}_{-0.2}$	-0.15
1.0	0.16 ^{+0.0} _{-0.0}	$0.4^{+0.0}_{-0.0}$	$0.64^{+0.0}_{-0.0}$	$1.1^{+0.1}_{-0.1}$	$1.3^{+0.1}_{-0.1}$	$2.1^{+0.2}_{-0.2}$	$2.1^{+0.2}_{-0.2}$	$4.1^{+0.5}_{-0.5}$	
0.7	$0.56^{+0.1}_{-0.1}$	$2.3^{+0.4}_{-0.3}$	$4.5^{+0.9}_{-0.8}$	$6.2^{+1.2}_{-1.1}$	$7.6^{+1.5}_{-1.4}$	$17^{+4.5}_{-4.0}$	$22^{+6.4}_{-5.5}$	$35^{+11.3}_{-9.6}$	- <u>0.05</u> ≥
0.50 0.500 1.688 2.875 4.062 5.250 6.438 7.625 8.812 10 Orbital Period [days]									000

Occurrence Rate Comparisons

We can combine our data with Gilliland et al., yielding *f*_{HJ} < 0.11%, the strongest constraint on 47 Tuc's HJ population so far.

Occurrence Rate Comparisons

We can combine our data with Gilliland et al., yielding **f_{HJ} < 0.11%**, the **strongest constraint** on 47 Tuc's HJ population so far.

This rate also rules out Masuda & Winn's estimated low-mass *Kepler* host rate of 0.24%.

A planet candidate?

The lightcurve itself looks reasonable...

A. Crisp

crisp.92@osu.edu

A planet candidate?

The lightcurve itself looks reasonable... In-transit image stacking doesn't indicate any centroid shifts...

crisp.92@osu.edu

Another eclipsing binary...

The lightcurve itself looks reasonable... In-transit image stacking doesn't indicate any centroid shifts...

But it's on 47 Tuc's binary sequence :-(

New eclipsing binary?

It's not included in the Weldrake 2004 or the OGLE catalog, but we still need to investigate more.

crisp.92@osu.edu

Summary

- 1. When combined with G00, we place the strongest constraint on 47 Tuc's f_{HJ} so far ($f_{HJ} < 0.11\%$).
- 2. We also rule out an f_{HJ} similar to the *Kepler* field rate for the first time.
- 3. We still find no planets in 47 Tuc, but there is interesting science to be done with our data, and with the other MISHAPS fields.

Back-up

- Radial Velocity
- Microlensing
- Direct Imaging
- Astrometry
- Other

Occurrence Rate Comparisons

We can combine our data with Gilliland et al., yielding **f_{HJ} < 0.11%**, the **strongest constraint** on 47 Tuc's HJ population so far.

This rate also rules out Masuda & Winn's estimated low-mass *Kepler* host rate of 0.24%.

But how does that compare to our expectations for the [Fe/H] and $[\alpha/Fe]$ -dependent scenarios?

Occurrence Rate Comparisons

We scale the low-mass *Kepler* occurrence rate from MW17 to the average abundances of 47 Tuc & the *Kepler* field, Johnson et al. 2010 $f_{HJ,47 Tuc} = f_{HJ,LMK} \frac{10^{1.2[Fe]/H]47T}}{10^{1.2[Fe]/H]LMK}}$ Using [Fe/H] gives f_{HJ} ≈ 0.028% Using [\alpha/H] = [Fe/H] + [\alpha/Fe] gives f_{HJ} ≈ 0.055%

Adding our stars from the central chip may allow us to reach the $[\alpha/H]$ range, but a different survey will be required to distinguish between the two scenarios.

• Plot lightcurve

- Plot lightcurve
- Plot color-magnitude diagram

- Plot lightcurve
- Plot color-magnitude diagram
- Plot stacked in-transit images

- Plot lightcurve
- Plot color-magnitude diagram
- Plot stacked in-transit images
- Plot nearby lightcurves

- Plot lightcurve
- Plot color-magnitude diagram
- Plot stacked in-transit images
- Plot nearby lightcurves
- Perform target-centered difference imaging and photometry

Candidate Rejection

The initial Zooniverse vetting leaves us with 40 planet candidates.

Our in-depth vetting process allows us to reject all but 2 as eclipsing binaries and other false positives.

Comparison Variable

Left: Weldrake et al., 2004

Right: This work

Improvements

- 1. Add 3 more nights of data that can potentially be used to confirm/reject transit-like signals.
- 2. Improve difference imaging in core chips.
- 3. Improve target selection.
- 4. Improve transit search algorithm.

Progress – Search Transit Models

Progress – New Color Cut

Extending our color selection from 20.8 to 22.0 increases our sample by ~9,400 stars.

Once the central chips have been added, together with the extended cut, our sample will increase by ~69,389 (87,499 total).

Improvements

- Improve difference imaging in core chips.
- Improve target selection.
- Improve transit search algorithm.
- Add 4 more nights of data that can potentially be used to confirm transit-like signals.

