New Constraints on the Giant Planet Occurrence Rate in 47 Tuc

Alison L. Crisp

CCAPP Symposium | Sept. 25, 2024

Image Credit: NASA/Hubble

5,759 Exoplanets

3,321 *Kepler* + *K2* 557 *TESS*

(NASA Exoplanet Archive 09/24/2024)

A. Crisp crisp.92@osu.edu 2

Halo – low [Fe/H], high [/Fe] *Image Credit: ESA/Gaia/DPAC*

Thick Disk – low [Fe/H], high [/Fe]

Thin Disk – high [Fe/H], low [/Fe]

Bulge – high [Fe/H], high [/Fe]

Why disentangle abundances?

- Giant planet formation strongly correlated with metallicity.
	- *f_{GP}* ∝ 10^{2.0 [Fe/H] (Fischer & Valenti,} 2005)
	- *f_{GP}* ∝ 10^{1.2 [Fe/H] (Johnson et al.,} 2010)
- Is [α/H]=[α/Fe]+[Fe/H] more important than [Fe/H] alone?
- [Fe/H] and [α/Fe] are strongly correlated in disk stars, so multiple populations need to be surveyed.

Fischer & Valenti, 2005

Why globular clusters?

- Well-known characteristics.
- Generally consistent populations.
- Accessible low-[Fe/H], high- [α/Fe].
- Place important constraints either way.

Values from Forbes 2010, Cordero 2014, & Pilachowski 2010

Why globular clusters?

APOGEE abundance data from Left: Weinberg et al., 2019; Right: Griffith et al., 2021

A. Crisp

But what if clusters match *Kepler* instead?

- Masuda & Winn (2017).
- Draws 34,091 stars matching G00's parameters from *Kepler sample*.
- Assumes two occurrence rates:
	- 0.43% (full sample).
	- 0.24% (low mass *Kepler,* 0.568– $0.876 M_{\odot}$).
- ⇒ Expect 4 planets for full, 2.2 planets for low mass.

MISHAPS: The Multiband Image Survey for High-Alpha PlanetS

- Performed with the Dark Energy Camera (DECam) at CTIO.
- Goal of measuring occurrence rates in different [α/Fe] population.
- Multiple filters used for false positive rejection.

MISHAPS: The Multiband Image Survey for High-Alpha Planets

- Performed with the Dark Camera (DECam) at CTI
- Goal of measuring occu rates in different [α/Fe] population.
- Multiple filters used for f positive rejection.

47 Tuc Observations

**Values from Forbes 2010, Cordero 2014, & Pilachowski 2010*

The MISHAPS Pipeline

Occurrence Rate and Limits

95% confidence \Rightarrow up to 3 planets could be present while we still observe none.

Occurrence Rate Limit

Occurrence Rate Limit

Occurrence Rate Comparisons

We can combine our data with Gilliland et al., yielding $f_{HJ} < 0.11\%$, the **strongest constraint** on 47 Tuc's HJ population so far.

Occurrence Rate Comparisons

We can combine our data with Gilliland et al., yielding $f_{HJ} < 0.11\%$, the **strongest constraint** on 47 Tuc's HJ population so far.

This rate also rules out Masuda & Winn's estimated low-mass *Kepler* host rate of 0.24%.

A planet candidate?

The lightcurve itself looks reasonable…

A planet candidate?

The lightcurve itself looks reasonable… In-transit image stacking doesn't indicate any centroid shifts…

A. Crisp crisp.92@osu.edu 22

Another eclipsing binary…

The lightcurve itself looks reasonable… In-transit image stacking doesn't indicate any centroid shifts…

But it's on 47 Tuc's binary sequence :-(

New eclipsing binary?

It's not included in the Weldrake 2004 or the OGLE catalog, but we still need to investigate more.

Summary

- 1. When combined with G00, we place the strongest constraint on 47 Tuc's f_{H1} so far (f_{H1} < 0.11%).
- 2. We also rule out an f_{H1} similar to the *Kepler* field rate for the first time.
- 3. We still find no planets in 47 Tuc, but there is interesting science to be done with our data, and with the other MISHAPS fields.

Back-up

- **Radial Velocity** \triangle
	- Microlensing
	- **Direct Imaging**
- Astrometry \bullet
- Other \star

Occurrence Rate Comparisons

We can combine our data with Gilliland et al., yielding $f_{HJ} < 0.11\%$, the **strongest constraint** on 47 Tuc's HJ population so far.

This rate also rules out Masuda & Winn's estimated low-mass *Kepler* host rate of 0.24%.

But how does that compare to our expectations for the [Fe/H] and [α/Fe]-dependent scenarios?

Occurrence Rate Comparisons

We scale the low-mass *Kepler* occurrence rate from MW17 to the average abundances of 47 Tuc & the *Kepler* field, Johnson et al. 2010 $f_{HJ,47 \, Tuc} = f_{HJ,LMK}$ $10^{1.2} [Fe/H]$ 47T $10^{1.2}[$ ^{Fe}/ $_H$] L MK Using [Fe/H] gives $f_{H1} \approx 0.028\%$ Using $\lbrack \alpha/H \rbrack$ = [Fe/H] + $\lbrack \alpha/Fe \rbrack$ gives $f_{H1} \approx 0.055\%$

Adding our stars from the central chip may allow us to reach the [a/H] range, but a different survey will be required to distinguish between the two scenarios.

• Plot lightcurve

- Plot lightcurve
- Plot color-magnitude diagram

- Plot lightcurve
- Plot color-magnitude diagram
- Plot stacked in-transit images

- Plot lightcurve
- Plot color-magnitude diagram
- Plot stacked in-transit images
- Plot nearby lightcurves

- Plot lightcurve
- Plot color-magnitude diagram
- Plot stacked in-transit images
- Plot nearby lightcurves
- Perform target-centered difference imaging and photometry

Candidate Rejection

The initial Zooniverse vetting leaves us with 40 planet candidates.

Our in-depth vetting process allows us to reject all but 2 as eclipsing binaries and other false positives.

Comparison Variable

Left: Weldrake et al., 2004

Right: This work

Improvements

- 1. Add 3 more nights of data that can potentially be used to confirm/reject transit-like signals.
- 2. Improve difference imaging in core chips.
- 3. Improve target selection.
- 4. Improve transit search algorithm.

Progress – Search Transit Models

Progress – New Color Cut

Extending our color selection from 20.8 to 22.0 increases our sample by ~9,400 stars.

Once the central chips have been added, together with the extended cut, our sample will increase by ~69,389 (87,499 total).

Improvements

- Improve difference imaging in core chips.
- Improve target selection.
- Improve transit search algorithm.
- Add 4 more nights of data that can potentially be used to confirm transit-like signals.

