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5,759 Exoplanets
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3,321 Kepler + K2 557 TESS

(NASA Exoplanet Archive 09/24/2024)



Bulge – high [Fe/H], high [𝛂/Fe]

Thin Disk – high [Fe/H], low [𝛂/Fe]

Thick Disk – low [Fe/H], high [𝛂/Fe] 

Halo – low [Fe/H], high [𝛂/Fe]Image Credit: ESA/Gaia/DPAC
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Why disentangle abundances?
• Giant planet formation strongly 

correlated with metallicity.
• fGP ∝ 102.0 [Fe/H] (Fischer & Valenti, 

2005)
• fGP ∝ 101.2 [Fe/H] (Johnson et al., 

2010)
• Is [α/H]=[α/Fe]+[Fe/H] more important 

than [Fe/H] alone?
• [Fe/H] and [α/Fe] are strongly 

correlated in disk stars, so multiple 
populations need to be surveyed.
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Fischer & Valenti, 2005



Why globular clusters?

• Well-known characteristics.
• Generally consistent 

populations.
• Accessible low-[Fe/H], high-

[α/Fe].
• Place important constraints 

either way.
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ω Cen

-1.35 [Fe/H]

0.3 [α/Fe]

47 Tuc

-0.78 [Fe/H]

0.3 [α/Fe]

Values from Forbes 2010, Cordero 2014, & 
Pilachowski 2010



Why globular clusters?

APOGEE abundance data from Left: Weinberg et al., 2019; Right: Griffith et al., 2021

BulgeThick 
Disk

Thin 
Disk
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Previous Searches
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Study # Stars Assumed Occ. Exp. Plan.

Gilliland et 
al. 2000

34,091 0.8-1.0% ~17

SMC
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Previous Searches
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Study # Stars Assumed Occ. Exp. Plan.

Gilliland et 
al. 2000

34,091 0.8-1.0% ~17

Weldrake et 
al. 2005

21,190 0.8% ~7

SMC
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But what if clusters match Kepler instead?
• Masuda & Winn (2017).
• Draws 34,091 stars matching G00’s 

parameters from Kepler sample.
• Assumes two occurrence rates:

• 0.43% (full sample).
• 0.24% (low mass Kepler, 0.568–

0.876 M☉).
⇒ Expect 4 planets for full, 2.2 planets 
for low mass.
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MISHAPS: The Multiband Image Survey for 
High-Alpha PlanetS

• Performed with the Dark Energy 
Camera (DECam) at CTIO.

• Goal of measuring occurrence 
rates in different [α/Fe] 
population.

• Multiple filters used for false 
positive rejection.
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• Multiple filters used for false 
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47 Tuc Observations
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47 Tuc

[Fe/H]* -0.78

[α/Fe]* 0.3

Hours Observed 126

*Values from Forbes 2010, Cordero 
2014,
 & Pilachowski 2010

Image: DES
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The MISHAPS Pipeline
Process Images

• Create 
Reference 
Images

• Perform 
Difference 
Imaging

Calibrate 
Photometry

• De-trend with 
Vartools

Perform Transit 
Search

• Search over 
grid of transit 
centers and 
durations 
with sliding 
"Boxcar"

Vet Candidates

• Lightcurves
• CMD
• Stacked 

Difference 
Images

• Periodograms 
& Folded 
Lightcurves

Clockwise from top left: reference image, 
individual image, difference image

15A. Crisp crisp.92@osu.edu



Occurrence Rate and Limits
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𝑓𝐻𝐽 =
𝑁𝑑𝑒𝑡

𝜀𝑑𝑒𝑡𝑃𝑡𝑟𝑁∗
𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑛𝑒𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑥 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑎𝑟𝑠

Human

vet

95% confidence ⇒ up to 3 planets could be present while we still 
observe none.
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Occurrence Rate Limit
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Occurrence Rate Limit
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fHJ < 0.43%



Occurrence Rate Comparisons

We can combine our data with Gilliland et al., yielding fHJ < 0.11%, 
the strongest constraint on 47 Tuc’s HJ population so far.
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Occurrence Rate Comparisons

We can combine our data with Gilliland et al., yielding fHJ < 0.11%, 
the strongest constraint on 47 Tuc’s HJ population so far.
This rate also rules out Masuda & Winn’s estimated low-mass 
Kepler host rate of 0.24%.
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A planet candidate?
The lightcurve itself looks reasonable…
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A planet candidate?
The lightcurve itself looks reasonable…
In-transit image stacking doesn’t indicate 
any centroid shifts…
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Another eclipsing binary…
The lightcurve itself looks reasonable…
In-transit image stacking doesn’t indicate 
any centroid shifts…

But it’s on 47 Tuc’s binary sequence :-(
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New eclipsing binary?
It’s not included in the Weldrake 2004 or 
the OGLE catalog, but we still need to 
investigate more.
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Summary

1. When combined with G00, we place 
the strongest constraint on 47 Tuc’s fHJ 
so far (fHJ < 0.11%).

2. We also rule out an fHJ similar to the 
Kepler field rate for the first time.

3. We still find no planets in 47 Tuc, but 
there is interesting science to be done 
with our data, and with the other 
MISHAPS fields.
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Back-up
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Occurrence Rate Comparisons

We can combine our data with Gilliland et al., yielding fHJ < 0.11%, 
the strongest constraint on 47 Tuc’s HJ population so far.
This rate also rules out Masuda & Winn’s estimated low-mass 
Kepler host rate of 0.24%.

But how does that compare to our expectations for the [Fe/H] and 
[α/Fe]-dependent scenarios?
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Occurrence Rate Comparisons

We scale the low-mass Kepler occurrence rate from MW17 to the 
average abundances of 47 Tuc & the Kepler field, Johnson et al. 2010

𝑓𝐻𝐽,47 𝑇𝑢𝑐 = 𝑓𝐻𝐽,𝐿𝑀𝐾

101.2 ൗ𝐹𝑒
𝐻 47𝑇

101.2 ൗ𝐹𝑒
𝐻 𝐿𝑀𝐾

Using [Fe/H] gives fHJ ≈ 0.028%
Using [α/H] = [Fe/H] + [α/Fe] gives fHJ ≈ 0.055%

Adding our stars from the central chip may allow us to reach the [α/H] 
range, but a different survey will be required to distinguish between the 
two scenarios.
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Vetting

• Plot lightcurve
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Vetting

• Plot lightcurve
• Plot color-magnitude diagram
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Vetting

• Plot lightcurve
• Plot color-magnitude diagram
• Plot stacked in-transit images
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• Plot color-magnitude diagram
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• Plot nearby lightcurves
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Vetting

• Plot lightcurve
• Plot color-magnitude diagram
• Plot stacked in-transit images
• Plot nearby lightcurves
• Perform target-centered 

difference imaging and 
photometry
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Candidate Rejection

The initial Zooniverse vetting 
leaves us with 40 planet 
candidates.
Our in-depth vetting process 
allows us to reject all but 2 as 
eclipsing binaries and other false 
positives.
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Comparison Variable
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ΔM
ag

Left: 
Weldrake et al., 2004

Right:
This work



Improvements

1. Add 3 more nights of data that can potentially be used to 
confirm/reject transit-like signals.

2. Improve difference imaging in core chips.
3. Improve target selection.
4. Improve transit search algorithm.
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Progress – Search Transit Models
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Progress – New Color Cut

Extending our color selection 
from 20.8 to 22.0 increases our 
sample by ~9,400 stars.
Once the central chips have 
been added, together with the 
extended cut, our sample will 
increase by ~69,389 (87,499 
total).
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Improvements

• Improve difference imaging in 
core chips.

• Improve target selection.
• Improve transit search 

algorithm.
• Add 4 more nights of data that 

can potentially be used to 
confirm transit-like signals.
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