Where do stars explode in the interstellar medium?

Sumit K. Sarbadhicary CCAPP Fellow (OSU)

Collaborators: Adam Leroy, Eric Koch, Ness Mayker Chen, Jordan Wagner, Erik Rosolowsky, Kathryn Neugent, Natalia Lahen, Chang-Goo Kim, Laura Chomiuk, LGLBS+PHANGS collaboration

Supernova feedback drives major physical processes in galaxies

Outflows

Interstellar turbulence

Hot gas

Cosmic rays

Metal cycling

Molecular cloud destruction

How do galaxies evolve?

LEDA 2046648 ESA/Webb, NASA & CSA, A. Martel

Types of stellar feedback

Types of stellar feedback

Critical factor Ambient Density

ISM properties significantly vary with "where" stars explode

 $\begin{array}{c}
x \\
10^{-26} \\
10^{-24} \\
10^{-24} \\
10^{-22} \\
10^{1} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{3} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{3} \\
10^{5} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
10^{7} \\
1$

Stars exploding in dense gas

SILCC simulations (Girichidis+ 2016)

Stars exploding

supernovae

randomly

gas clouds

Where do stars explode in the ISM?

Characterise from observations

High-resolution maps of multi-phase ISM with VLA, ALMA, MUSE, JWST

Atomic Hydrogen

Molecular hydrogen

Era of high-resolution gas maps of nearby galaxies

Phangs

BOUP

VLA X-Pro

Era of high-resolution gas maps of nearby galaxies Before ALMA... After ALMA... NGC3627 NGC3627 Phangs 1 kpc kpc

63 supernovae

31 galaxies (<20 Mpc)

60-150 pc resolution

Ness Mayker Chen (OSU)

Mayker Chen+ (incl. **SKS**) 2022 ApJ 944:110

Alternative: Local Group galaxies!

Spectral lines: Eric Koch, Nick Pingel, Adam Leroy, Erik Rosolowsky Continuum: Sumit Sarbadhicary, Erik Rosolowsky, Preshanth Jagannathan

A VLA X-Projec

Pilot study in M33

Jordan Wagner (SURP '22, OSU)

Ongoing ALMA ACA survey (Koch+ in prep)

Evolved massive stars as "future" supernovae.

Evolved massive stars as "future" supernovae.

Cold ISM around "future" supernovae

Younger massive stars explode in denser ISM

SKS+ (in prep)

Younger massive stars explode in denser ISM

Younger massive stars explode in denser ISM

SKS+ (in prep)

...But a significant fraction explodes outside molecular clouds

SKS+ (in prep)

A new way to observationally constrain feedback models in simulations

SKS+ (in prep)

SKS+ (in prep)

York Contraction

Ongoing/future work

Supernova progenitors in 38 nearby galaxies with HST (AR 17572)

Phangs

~2400 new supernova remnants in 19 galaxies with MUSE spectroscopy

Jing Li (ZAH Heidelberg)

Where do stars explode in the ISM?

- Dense molecular gas more common near more massive progenitors.
- 42-70% (depending on mass) explode outside molecular clouds.
- Measurements can directly constrain feedback models in simulations.

Exciting use case for modern/upcoming observatories (e.g. JWST, Roman, ELTs, ngVLA)

*SKS+ (in prep)