Searching for UHE Neutrinos with PUEO

William Luszczak (OSU/CCAPP) OSU CCAPP Fellow Symposium September 28, 2022

Crash Course on Neutrinos

Standard Model of Elementary Particles

→ Light, electrically neutral, weakly interacting particles that originate from a variety of sources

The Highest Energy Neutrinos

UHE neutrinos expected to be produced by CR interactions with the CMB:

$$p + \gamma \to \Delta^+ \to n + \pi^+$$
$$\pi^+ \to \mu^+ + \nu_\mu$$
$$\mu^+ \to e^+ + \nu_e + \overline{\nu_\mu}$$

→ UHE neutrino flux expected at ~EeV energies

Why Do We Care About Neutrinos?

- The universe is opaque to photons at long distances and high energies
- Neutrinos allow us to do astronomy beyond the photon horizon

The Askaryan Effect

→ Neutrino interactions in the ice will produce a coherent radio wave

→ Attenuation length of radio in ice is ~km

- Compare to ${\sim}100\text{m}$ for the optical cherenkov signal

→ Can instrument a large volume of ice with few physical installations

- In-ice (ARA, RNO-G)
- Airborne (ANITA, PUEO)

UHE Neutrino Detectors

Payload for Ultrahigh Energy Observations

Main instrument with 108 dualpolarization antennas

- 300-1200 MHz frequency range
- Look for radio signal from neutrino interactions in antarctic ice

- Lowest 12 antennas tilted downwards an additional 30 degrees to study potential steep events

Low frequency instrument with 8 lowfrequency antennas

- 50-300 MHz frequency range
- Deployed below the main instrument
- Enhances sensitivity to air showers and and tau decays

How It Works

How It Works

9

How It Works

New Stuff: Phased Array Trigger

Toy simulation, not an actual event

New Stuff: Phased Array Trigger

- \rightarrow Do this all the time in all directions
- \rightarrow Significantly lowers signal antenna SNR thresholds
- → PUEO will be among the first to implement this concept at the full-detector scale
 - Previously demonstrated on ARA (1 station)

- Also planned for other upcoming UHE neutrino detectors (RNO-G, BEACON, etc.)

New Stuff: Low Frequency Instrument

8 antennas deployed below the main instrument

50 MHz to 300 MHz frequency range

- Broader range of triggerable viewing angles
- Excellent for tau neutrino detections

Independent trigger, but complementary to main instrument

- Coincident triggers can improve sensitivity
- Triggers of one instrument can be used to improve SNR of the other

Expected Performance: Diffuse UHE Neutrinos

Simulated Event : 1E21 eV

14

Expected Performance: Diffuse UHE Neutrinos

New simulation now includes:

- New detector geometry
- New antennas
- New RF amplification chain
- Phased array trigger

Expected Performance: Transient Sources

It's Happening!

PUEO planned for launch in 2025

- First analysis results expected roughly a year after flight
- Data will be publicly available post-publication

Lots of new things to be excited about:

- Phased array trigger
- LF Instrument
- Additional nadir antennas
- New hardware
- New calibration systems

Large instantaneous effective area presents a unique opportunity for UHE astrophysics

Backup Slides

Why Do We Care About Cosmic Rays?

• Cosmic rays can let us study regions opaque to photons

- Energetic sources that are far away
- Dense regions

• Can be used to study physics at extreme energies

Problem: Cosmic rays are charged

• Arrival direction at Earth does not necessarily correlate to the source direction

The New Stuff: Antennas

- \rightarrow New antennas need to be ${\sim}30\%$ smaller for the new frequency range
- \rightarrow Vendor for ANITA antennas effectively no longer exists
- → New antenna production model received and tested!
- \rightarrow New antenna responses now included in simulation

 $\rightarrow\,$ Photos courtesy of Kaeli Hughes and Zach Martin

Airborne Calibration

→ 3 hand-launched payloads

- Ensures at least one payload is near the main PUEO instrument at all times

- Provide regular calibration for the PUEO instrument

- Study the reflection of radio signals off the ice

→ 1 primary payload with fancy, expensive pulser

→ 2 slimmed down payloads with pulsers built in-house

Expected Performance

Model	$< N_{\nu} > (30 \text{ d})$	$< N_{\nu} > (100 \text{ d})$
Non-local proton cosmogenics	1.8	5.9
Non-local proton cosmogenics (high E_{max})	4.5	15.0
TA best fit $[5, 7]$	0.9	2.9
Subdominant proton cosmogenics [6]	3.7	12.4
Diffuse FSRQs, max [10]	0.4	1.3
Diffuse Pulsars, max [13]	0.2	0.5
Diffuse AGN [11]	0.2	0.5
Diffuse GRB Blast-waves, max [12]	0.2	0.6
IceCube flux, max, all-flavor, extrapolated [14]	0.5	1.7

Flavor Physics

- → Askaryan channel dominated by electron neutrinos at lower energies
- → Air shower channel dominated by tau neutrinos

→ Measurement of e/τ ratio in new energy regime possible

- Constrains source models (e.g. arXiv: 1902.08630v2)

- Potential tests of fundamental neutrino physics (arXiv: 1001.4878)

Expected Performance: Transient Sources

24