Measuring the cosmic expansion rate at high redshift with DESI Lyman- α forests

Andrei Cuceu, Center for Cosmology and AstroParticle Physics, The Ohio State University

$\begin{array}{c|c} \text{Dark energy} \\ \text{spectroscopic} \\ \text{instrument} \end{array} \quad The Lyman-\alpha forest \\ \end{array}$

DESI is creating a 3D Map of the Universe

Expansion and growth rate measurements from SDSS

U.S. Department of Energy Office of Science

Figure from Alam et al. 2021 (2007.08991)

Expansion rate measurements with DESI

U.S. Department of Energy Office of Science

Based on Alam et al. 2021 (2007.08991) and DESI Collaboration et al. 2016 (1611.00036)

DARK ENERGY SPECTROSCOPIC First measurements from DESI

U.S. Department of Energy Office of Science

Featured on Nature's Best Science Images of June 2023

Video credit: David Kirkby / DESI collaboration

DARK ENERGY SPECTROSCOPIC First measurements from DESI

U.S. Department of Energy Office of Science

DESI spectrum of Quasar at redshift z = 2.495

Figure from Ramírez-Pérez et al. 2023 (2306.06312)

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

 $Ly\alpha$ forest auto-correlation function

Figure from de Sainte Agathe et al. 2019 (1904.03400)

DARK ENERGY SPECTROSCOPIC Compressing into wedges

First measurements from DESI

U.S. Department of Energy Office of Science

CCAPP Symposium 2023, Andrei Cuceu^{r[h⁻¹Mpc]}

 $r^2 \xi(r)$

 $r^{2}\xi(r)$

200

DARK ENERGY SPECTROSCOPIC Cosmology from the 3D Lyman- α forest

200

Expansion history:

- BAO: circular feature at ~ 100 Mpc/h
- Alcock-Paczyński effect: Produces distinct anisotropy in the correlation function
- Growth rate of

structure:

 RSD: Main anisotropy present in the correlation functions

 $Ly\alpha \times QSO$

DARK ENERGY SPECTROSCOPIC INSTRUMENT COSMOLOGY FOOM DESI Lyα forests

U.S. Department of Energy Office of Science

Forecast of DESI expansion history constraints

- DESI results from Survey Validation are out
- Currently working on analysing the first year of DESI data
- First cosmological measurements expected in 2024

DARK ENERGY SPECTROSCOPIC Measuring the Hubble constant

U.S. Department of Energy Office of Science

- > In flat Λ CDM, Alcock-Paczynski $\rightarrow \Omega_m$
- ▶ Adding isotropic BAO \rightarrow $H_0 r_d$
- ➤ Adding a prior on $Ω_b h^2$ from Big Bang Nucleosynthesis (BBN) → H₀
- > Ly α constraint: $H_0 = 63.2 \pm 2.5$ km/s/Mpc
- > Full eBOSS: $H_0 = 67.2 \pm 0.9$ km/s/Mpc

From Cuceu et al. (2023b), PRL 130, 191003, 2023

DARK ENERGY SPECTROSCOPIC INSTRUMENT MEASURING dark energy

U.S. Department of Energy Office of Science

Measuring dark energy with free curvature

Measuring dark energy equation of state

From Cuceu et al. (2023b), PRL 130, 191003, 2023

DARK ENERGY SPECTROSCOPIC Optimal compression for Lyα forest analyses

U.S. Department of Energy Office of Science

DARK ENERGY SPECTROSCOPIC INSTRUMENT Optimal compression for Lyα forest analyses

U.S. Department of Energy Office of Science

- Bestfit χ^2 is identical!
- Instead, this shows up as a bias in measured parameters

From Gerardi, Cuceu et al. 2023 (2309.13164)

DARK ENERGY SPECTROSCOPIC INSTRUMENT

NASA Hubble Fellowship Program

U.S. Department of Energy Office of Science

Science & Technology Facilities Council

Thanks to our sponsors and 69 Participating Institutions!

DARK ENERGY SPECTROSCOPIC INSTRUMENT Rescaling the peak component

DARK ENERGY SPECTROSCOPIC INSTRUMENT RESCAling the smooth component

DARK ENERGY SPECTROSCOPIC INSTRUMENT Why no Lyα RSD measurement yet?

U.S. Department of Energy Office of Science

• Linear theory terms:

Lya x Lya: $P(k, \mu, z) = (b_F + b_{\eta,F} f \mu^2)^2 P(k, z)$ Lya x QSO: $P(k, \mu, z) = (b_F + b_{\eta,F} f \mu^2) (b_Q + f \mu^2) P(k, z)$ QSO x QSO: $P(k, \mu, z) = (b_Q + f \mu^2)^2 P(k, z)$

- Ly α forest \longrightarrow growth rate (f) degenerate with unknown velocity divergence bias $(b_{\eta,F})$.
- Joint analysis of Ly α x Ly α and Ly α x QSO would be able to measure f.

High-z 3×2pt Lya x Lya Lya x QSO QSO x QSO

Cosmology from DESI Lyα forests

U.S. Department of Energy Office of Science

and Cuceu et al. (2021), MNRAS, 506, 4, 2021

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Ly α auto-correlation function compressed into a shell in isotropic separation r, and shown as a function of the line-of-sight angle μ .

DARK ENERGY SPECTROSCOPIC INSTRUMENT BODSS data and best-fit model

U.S. Department of Energy Office of Science

From Cuceu et al. (2023b), PRL 130, 191003, 2023