Workshop Summary: Fermi and ground-based gamma-ray observations

Fermi satellite > 1000 sources @ GeV

Cherenkov detectors ~100 sources @ TeV

• Issues:

High-energy Astrophysics, Cosmic-ray Origin, Nature of Dark Matter, Fundamental Physics, etc.

• Aims:

New approaches to using the currently available data? Best ways to enhance science by the next-generation detectors?

lennifer Siegal-Gaskins

Cosmic-ray Electrons and Positrons

Fermi and ground-based gamma-ray telescopes measure CREs too!

See M. Kistler's slides

Dark matter signals in CREs and gamma-rays from the Sun

- a) Annihilation into a newlight state that escapes thesun and then decays.
- b) Dark Matter does not accumulate in the center, annihilates *outside* the sun.

Some DM models (inelastic DM, secluded DM) motivated to explain recent data imply a flux of CREs and gamma-rays from the Sun

Constraints on DM annihilation rate from solar gamma-ray measurements

See I. Yavin's slides

Models are detectable/ constrainable by Fermi and ground-based gamma-ray telescopes

Gamma-ray Workshop, CCAPP S

Fermi bubbles

Diffuse Excesses in the Fermi-LAT Data

The Fermi Bubbles and Galactic

Center Excess

No convincing explanation yet

Explanations of Fermi

- 1.) Inverse Compton Scattering of leptons injected near galactic center (Lin et al. 2010)
- 2.) Energetic Proton Emission from Galactic Center (Crocker & Aharonian, 2011)
- 3.) Dark Matter Annihilation (Dobler et al. 2011)
- 4.) Millisecond Pulsars (Malyshev et al. 2010)
- 5.) Transient AGN Activity (Guo & Mathews. 2011)
- 6.) Systematics in foreground subtraction (Linden & Profumo, 2010)
- 7.) Extremely unfortunate nearby source

How to differentiate?

See T. Linden's slides

Dark matterganstrainten from displication of the second straintent of t

Fermi and MAGIC observations of Segue I constrain DM models

See L. Strigari's slides

Probing dark matter with AGN jets

DM interactions with electrons could produce spectral signatures in off-axis gammaray emission from AGN

See L. Ubaldi's slides

Anisotropy constraints on gamma-ray source populations

Constraints on Galactic MSP population from measurements of high-latitude diffuse intensity and anisotropy

Anisotropy constraints promising: for some source classes such as millisecond pulsars, anisotropy provides a stronger constraint than intensity

Robust dark matter signatures?

selief etection Data indicat: lines KENON OBENT PAMELA ATIC/FERMI very Sharp cutoffs ? (e.g. PANELA) KESS 511 KeV emission bolsteed by multiple consistent WIMAP have *DM-2(E Golgi V (Maralto Jee Fermi haze/bubbles \$\$ & future data & (averat about dinnap

The HAWC Observatory

HAWC will significantly improve high-energy gamma-ray sensitivity, some overlap with Fermi

See D. Zaborov's slides

Gamma-ray Workshop, CCAPP Symposium, April 6, 2011

High-energy neutrinos from GRBs

See S. Gao's slides

Secondaries as a probe of the EBL and IGMF

Gamma-rays from secondaries from cosmic-ray protons

Constraints can be placed on EBL and IGMF from Fermi and ACT observations of blazars

Gamma-ray constraints on the extragalactic background light

See J. Finke's slides

Fermi and CTA data access and support

See H. Tajima's slides

Contribution of astrophysical sources to the gamma-ray background

Scenario in which EGRB dominated by emission from blazars consistent with Fermi source count data

See T. Venter's slides

$\label{eq:origin} \begin{array}{l} Origin \ of \ the \ extragalactic \ diffuse \\ background \\ Model = PS \times Galactic \times Isotropic \end{array}$

k-photon pixel counts, E > 1.0 GeV 10⁵ **Results:** Pixel counts Model **Point** Sources I. AGN-like point sources ~ 20% Point sources 10° Isotropic contribution 2. Galactic non-isotropic ~ 50% Galactic diffuse $-2\ln L = 744.1$ ~ 30% 3. Isotropic 10³ $N_{\rm parameters} = 5$ $N_{
m points} = 500$ $q_{\rm ps}\!=\!0.17\pm\!0.02$ g^{x} 10² Pixel count $q_{\rm iso} \leq 0.32$ $q_{\rm gal}\!\geq\!\!0.51$ statistics constrain Galactic contribution of point sources to 10^{0} diffuse emission 10^{-1} 10⁰ 10^{1} 10^{2} lsotropic

See D. Malyshev's slides