The Secondary Universe
Secondary photons and neutrinos from distant blazars and the intergalactic magnetic fields

Warren Essey
UCLA / UC Berkeley
April 6, 2011
The talk will be based on

- **A new interpretation of the gamma-ray observations of distant active galactic nuclei** - WE and A. Kusenko - *Astroparticle Physics* 33, 81 (2010)

- **Determination of intergalactic magnetic fields from gamma ray data** - WE, S. Ando and A. Kusenko - *arXiv:1012.5313 (Submitted to PRL)*

- **New unpublished results**
Cosmic Rays

- Cosmic rays detected over a very wide energy range up to \(E \sim 10^{11}\text{GeV} \)
- Source of highest energy cosmic rays unknown, but thought to be extragalactic
- Some correlations with Active Galactic Nuclei (AGN) have been reported \((\text{Tinyakov and Tkachev})\), but current results are inconclusive
- Composition (protons or heavy nuclei) still under debate
Extragalactic sources observed at energies up to ~ 10 TeV

Best described by diffusive shock model (Malkov & Drury 2001)

Can be described by hadronic or leptonic models

Gamma ray power law spectra $\frac{dN}{dE} \sim E^{-\Gamma}$ with $\Gamma \geq 1.5$ predicted by most models (Aharonian et al. 2006; Malkov & OC Drury 2001)

Numerical simulations show harder electron spectra for relativistic shocks (Stecker et al 2007), but for Synchrotron-Self-Compton (SSC) scenario the resulting spectra would experience substantial softening from Klein-Nishina effects making $\Gamma \geq 1.5$ (Böttcher et al 2008)

Gamma rays pair produce with Extragalactic Background Light (EBL) to soften observed spectra
Many competing models using many differing philosophies

Strict lower limit set by galaxy counts

Gamma ray data could give upper limits due to attenuation from pair production, but we need to be careful

Figure from Krennrich et al 2008
Highest energy photons pair produce off extragalactic background light (EBL) and observed signal shows significant softening.
Conventional Approach

- Calculate optical depth $\tau(E)$ for a given EBL model.
- Observed spectrum will be $\frac{dN}{dE} = N_0 E^{-\Gamma_{int}} \times e^{-\tau(E)}$ where $N_0 E^{-\Gamma_{int}}$ is the intrinsic gamma ray spectrum.
- If best fit gives $\Gamma_{int} < 1.5$ then exclude EBL model and set EBL model with $\Gamma_{int} = 1.5$ as upper limit.
- If EBL model already at lower limits set by galaxy counts and $\Gamma_{int} < 1.5$ then conclude AGN has a particularly hard spectrum (this has lead to predicted intrinsic spectra as hard as $\Gamma = 0.5$).

Figure from Krennrich et al 2008
Blazars at redshifts $\gtrsim 0.1$ have particularly hard spectra

Krennrich et al used a set of 3 such blazars to show $\Gamma = 1.28 \pm 0.20$ or harder using lower limits on EBL

Nearby blazars show softer spectra and Fermi measured a median $\Gamma \sim 1.9$ for blazars in the GeV energy range (Abdo et al 2009)
Blazars at redshifts $\gtrsim 0.1$ have particularly hard spectra. Krennrich et al used a set of 3 such blazars to show $\Gamma = 1.28 \pm 0.20$ or harder using lower limits on EBL. Nearby blazars show softer spectra and Fermi measured a median $\Gamma \sim 1.9$ for blazars in the GeV energy range (Abdo et al 2009).

Can this surprising spectral behaviour be explained by using a new approach?
Highest energy photons pair produce off extragalactic background light (EBL) forming EM cascades. The secondary photons contribute to observed spectrum.
For distant sources secondary photons will be produced from EM cascades from interactions with EBL and CMB photons.

Start with intrinsic spectrum \(\frac{dN}{dE} = N_0 E^{-\Gamma_{int}} \)

Use Monte Carlo to track individual photons and all secondary particles.

Include effects from intergalactic magnetic fields (IGMF).

Build observed spectrum on Earth.

Figure from Krennrich et al 2008
Ran a large scale Monte Carlo tracking individual particles.

Used intrinsic gamma ray spectra with power law spectrum \(\frac{dN}{dE} \sim E^{-\Gamma} \) with \(\Gamma \sim 0.5 - 2 \).

Used EBL models ranging from a "high" one, based on observed luminosity functions (Stecker et al), down to a "low" one based on lower limits from galaxy counts. EBL models include evolution with redshift.

Included intergalactic magnetic field (IGMF), random field with typical correlation length.
Results fitted to Hess data for 1ES0229+0200 at $z = 0.14$ with intrinsic spectra $\Gamma = 1.5$ and intergalactic magnetic field (IGMF) $= 10^{-15} \text{G}$ for "high" EBL model from Stecker et al.
Results fitted to Hess data for 1ES0229+0200 with intrinsic spectra $\Gamma = 1.5$ and $\text{IGMF} = 10^{-15} G$ for "high" EBL model (blue) from Stecker et al and "low" EBL (purple) based on lower limits from galaxy counts.
Results show a good fit to experimental results, reduced \(\chi^2 < 1 \).

Intrinsic spectra with \(\Gamma > 1.5 \) also give good fit to data for a variety of parameters, in agreement with theoretical predictions.

Good fit for a variety of EBL models, unlike conventional approach that excluded models such as Stecker et al for the case of \(\Gamma > 1.5 \).
Huge uncertainty in intergalactic magnetic fields (IGMF) with current upper limits set to $10^{-6} - 10^{-12}$ G depending on model (Dolag et al 2004)

Important to note that only upper limits exist for IGMF and perfectly consistent with current models down to 10^{-18} G

Secondary gamma rays may provide a way to test this

Intergalactic magnetic fields deflect electrons and positrons causing some of the secondary gamma rays to arrive outside the angular resolution of the detectors.

Can use both Hess results and Fermi upper limits to place limits on intergalactic magnetic fields and AGN properties.
Results fitted to Hess data for 1ES0229+0200 with intrinsic spectra $\Gamma = 1.5$ and intergalactic magnetic field (IGMF) $= 10^{-15} G$ (Blue) and $= 10^{-18} G$ (Purple) for "high" EBL model.

Warren Essey

The Secondary Universe
Results fitted to Hess data for 1ES0229+0200 with intrinsic spectra $\Gamma = 1.5$ and intergalactic magnetic field (IGMF) $= 10^{-15} G$ (Blue) and $= 10^{-13} G$ (Purple) for "high" EBL model.
Results fitted to Hess data for 1ES0229+0200 with intergalactic magnetic field (IGMF) = 10^{-15} G for intrinsic spectra $\Gamma = 1.5$ (Blue) and 1.8 (Purple) for “high” EBL model.
Can set lower limit on intergalactic magnetic fields (IGMF) if too many GeV scale secondary photons arrive within Fermi’s angular resolution.

Can set upper limit on IGMF if magnetic field large enough to affect signal in Hess energy range. A \(\chi^2 \) analysis can be done on multiple sources can be performed to set upper limits.

Can set limits on intrinsic spectra.
Intergalactic magnetic fields and intrinsic spectra Γ disallowed by spectral fits to Hess (Red shaded region) and Fermi data (Green shaded region).

Two EBL models are shown, ”high” EBL (top) and ”low” EBL (bottom).

A high energy cutoff of 100 TeV was used for primary photons.
Intergalactic magnetic fields and intrinsic spectra Γ disallowed by spectral fits to Hess (Red shaded region) and Fermi data (Green shaded region).

Two EBL models are shown, ”high” EBL (top) and ”low” EBL (bottom).

A high energy cutoff of 20 TeV was used for primary photons which improves limits.
Results

- Limits set on intergalactic magnetic fields (IGMF) and AGN properties for a wide range of models.
- Some model dependent lower limits on IGMF had been set using spectral data by other authors (Nerenov, Tavecchio, Dolag, Dermer), but not as comprehensive as our results.
- First upper limits on IGMF using spectral data.
- Limit of $\Gamma < 1.8$ for intrinsic spectra, much closer to Fermi’s mean value for nearby blazars of 1.9 than previously reported by other authors.
Limits on IGMF suggest magnetic field could be of the order of $10^{-12} - 10^{-18}$ G for a large section of parameter space.

Magnetic fields of this order imply that cosmic rays will travel in almost a straight line from the source and it becomes necessary to include them in the analysis.

Cosmic rays comprised of protons will interact with EBL and CMB along the way to Earth

The dominate reactions will be

$$p + \gamma_b \Rightarrow p + e^+ + e^-$$

$$p + \gamma_b \Rightarrow N + \pi's \Rightarrow \gamma's + \nu's$$

Neutrons and pions decay very quickly

e$^+e^-$ pairs upscatter CMB photons to higher energies

If intergalactic magnetic fields (IGMF) sufficiently low, then secondaries will point back to source
Cosmic ray protons undergo proton pair production off CMB and photopion production off EBL. These secondaries lead to high energy gamma rays and neutrinos.
Results fitted to Hess data for 1ES0229+0200 with cosmic ray protons as primary source. An intrinsic spectra of $\Gamma = 2$ and intergalactic magnetic field (IGMF) = 10^{-15}G were used with a "high" EBL model.
Results fitted to Hess data for 1ES0229+0200 with cosmic ray protons as primary source for intergalactic magnetic field (IGMF) = 10^{-15} G (Blue) and = 10^{-18} G (Purple) were used with a ”high” EBL model.
Results fitted to Hess data for 1ES0229+0200 with cosmic ray protons as primary source for intergalactic magnetic field (IGMF) = 10^{-15} G(Blue) and = 10^{-13} G(Purple) were used with a ”high” EBL model.
Calculated spectrum of 1ES 0347-121 normalized to Hess data

Calculated spectrum of 1ES 1101-232 normalized to Hess data

<table>
<thead>
<tr>
<th>Source</th>
<th>Redshift</th>
<th>EBL Model</th>
<th>L_p (erg/s)</th>
<th>$L_{p,iso}$ (erg/s)</th>
<th>χ^2</th>
<th>DOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ES0229+200</td>
<td>0.14</td>
<td>High</td>
<td>3.1×10^{43}</td>
<td>1.1×10^{46}</td>
<td>1.8</td>
<td>7</td>
</tr>
<tr>
<td>1ES0347-121</td>
<td>0.188</td>
<td>High</td>
<td>5.2×10^{43}</td>
<td>1.9×10^{46}</td>
<td>3.4</td>
<td>6</td>
</tr>
<tr>
<td>1ES1101-232</td>
<td>0.186</td>
<td>High</td>
<td>6.3×10^{43}</td>
<td>2.3×10^{46}</td>
<td>4.9</td>
<td>9</td>
</tr>
<tr>
<td>1ES0229+200</td>
<td>0.14</td>
<td>Low</td>
<td>1.3×10^{43}</td>
<td>4.9×10^{45}</td>
<td>6.4</td>
<td>7</td>
</tr>
<tr>
<td>1ES0347-121</td>
<td>0.188</td>
<td>Low</td>
<td>2.7×10^{43}</td>
<td>1.0×10^{46}</td>
<td>16.1</td>
<td>6</td>
</tr>
<tr>
<td>1ES1101-232</td>
<td>0.186</td>
<td>Low</td>
<td>3.0×10^{43}</td>
<td>1.1×10^{46}</td>
<td>16.1</td>
<td>9</td>
</tr>
</tbody>
</table>

Model parameters for the spectra shown above. (Here we assumed $B = 10^{-15}$ G, $E_{\text{max}} = 10^{11}$ GeV, $\alpha = 2$, and $\theta_{\text{jet}} = 6^\circ$.)
Cosmic ray secondaries have slightly harder spectrum as no primary photons are present at lower energies.

Results robust against changes in intrinsic spectrum and shape is determined by EBL structure. We considered $\Gamma = 1.5 - 3$.

95% CL limit on IGMF found to be

$$2 \times 10^{-16} \, \text{G} < B < 3 \times 10^{-14} \, \text{G} \quad ("High" \text{ EBL})$$
$$1 \times 10^{-17} \, \text{G} < B < 8 \times 10^{-16} \, \text{G} \quad ("Low" \text{ EBL})$$

Signal extends to very high energies with little suppression.

Galactic magnetic fields make it hard to prove that AGN are source of cosmic rays, but lack of high energy cutoff could prove both this and low IGMF.
Secondary gamma rays with low IGMF have some testable consequences:

For $B > 10^{-15}$G halos will be present around source, more significant for cosmic rays.

No short scale time variability for sources with $z > 0.1$. Variability has been observed at $E \sim 200$GeV but never in the TeV range. In fact for 1ES0229+200 the "data show no evidence for significant variability on any time scale."

For cosmic rays an accompanying high energy neutrino signal should be seen.
Secondary gamma rays with low IGMF have some testable consequences:

- For $B > 10^{-15}$ G halos will be present around source, more significant for cosmic rays.

No short scale time variability for sources with $z > 0.1$, variability has been observed at $E \sim 200$ GeV but never in the TeV range. In fact for 1ES0229+200 the "data show no evidence for significant variability on any time scale." For cosmic rays an accompanying high energy neutrino signal should be seen.
Secondary gamma rays with low IGMF have some testable consequences:

- For $B > 10^{-15}$ G halos will be present around source, more significant for cosmic rays.

- No short scale time variability
 For sources with $z > 0.1$ variability has been observed at $E \sim 200\text{GeV}$ but never in the TeV range. In fact for 1ES0229+200 the “data show no evidence for significant variability on any time scale.”
Consequences of Model

Secondary gamma rays with low IGMF have some testable consequences:

- For \(B > 10^{-15} \) G halos will be present around source, more significant for cosmic rays.

- No short scale time variability
 For sources with \(z > 0.1 \) variability has been observed at \(E \sim 200\text{GeV} \) but never in the TeV range. In fact for 1ES0229+200 the ”data show no evidence for significant variability on any time scale.”

- For cosmic rays an accompanying high energy neutrino signal should be seen.
Recent results hint at a magnetic field of the order of 10^{-15} G.

Calculations done with 2 separate methods, first with Fermi prelaunch point spread function and second with Crab image. Both methods showed a halo with a 3.5σ significance.

Measured angular distribution of stacked set of Fermi AGN (Ando, Kusenko 2010)
Measured angular distribution of stacked set of Fermi AGN (Ando, Kusenko 2010)

Calculated angular spectrum for secondary photons in the energy range 3 GeV - 10 GeV from high energy gamma rays for an AGN with IGMF = 10^{-15} G. Results are normalized to data from Ando, Kusenko 2010.
Measured angular distribution of stacked set of Fermi AGN (Ando, Kusenko 2010)

Calculated angular spectrum for secondary photons in the energy range 3 GeV - 10 GeV from cosmic rays for an AGN with IGMF = 10^{-15} G. Results are normalized to data from Ando, Kusenko 2010
Calculated time delay with one sigma error bars of secondary gamma rays for a cosmic ray source at $z \sim 0.2$ and IGMF $= 10^{-15}$ G.
Timing and Variability

- Time delays require time to build signal up to maximum.
- All timescales are longer than current gamma ray experiments so no variability should be observed. This agrees with current data.
- If average source activity is on shorter timescales, signal will be suppressed at lower energies.
- Additional delays can occur at source for cosmic rays (Ask Kohta).

Time for secondary gamma ray signal from a cosmic ray source at $z \sim 0.2$ and IGMF $= 10^{-15}$ G to build up to maximum value.
Calculated gamma ray and neutrino spectra for 1ES 0229+200 for various high energy cutoffs in the proton spectrum. A proton spectrum with $\Gamma = 2$ was used (arXiv:0912.3976v1)
Secondary neutrinos have different scaling due to interactions along the way
Expect \(\frac{1}{D^2} \times P(\text{Interaction}) \sim \frac{1}{D} \), this allows more distant sources to be detectable.
Secondary neutrinos have different scaling due to interactions along the way.
Expect \(\frac{1}{D^2} \times P(\text{Interaction}) \sim \frac{1}{D} \), this allows more distant sources to be detectable.

All neutrons decay, as opposed to primary neutrinos where neutrons at source can interact with photon field. Implies secondary flavor ratios should differ from 1:1:1.
Secondary neutrinos have different scaling due to interactions along the way. Expect $\frac{1}{D^2} \times P(\text{Interaction}) \sim \frac{1}{D}$, this allows more distant sources to be detectable.

All neutrons decay, as opposed to primary neutrinos where neutrons at source can interact with photon field. Implies secondary flavor ratios should differ from 1:1:1.

Signal close to IceCube’s sensitivity.
Future Work

- Fit more sources to improve estimates on IGMF, EBL and AGN properties
- Improve estimates using halo structure.
- Extend code to include heavy nuclei
 - Different threshold and nuclear photo-disintegration
 - Different neutrino signature
 - Might be able to set limits on composition of cosmic rays from gamma ray and neutrino signals
- Include more realistic magnetic fields
- Improve timing estimates
- Extend to GRB cosmic rays
High energy gamma rays and cosmic rays from AGN produce secondary gamma rays and neutrinos on the way to Earth.

The secondary gamma rays give a good fit to TeV sources at high redshift and energy, even for EBL models that were previously claimed to be excluded.

- Calculated spectra robust for various photon and proton injection models.

Secondary neutrinos should be visible with neutrino experiments like IceCube.

Unique scaling allowing possibility of detection of sources at higher redshift.
Limits set on IGMF and AGN properties for a wide range of models.

- AGN spectral index $\Gamma < 1.8$ for this set of sources
- Assuming cosmic ray component robust limit of $B_{\text{IGMF}} < 3 \times 10^{-14}$ G

$$1 \times 10^{-17} \text{ G} < B_{\text{IGMF}} < 3 \times 10^{-14} \text{ G}$$

- Assuming intrinsic gamma component dominates secondaries then a robust lower limit of $B_{\text{IGMF}} > 10^{-17}$ G is found and model dependent upper limits found using ACT spectral data

Halo structure predicted and observed.

Lack of variability predicted and so far observed.

Future work can provide information on EBL, IGMF, AGN properties and cosmic ray composition